

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

ROBOTICS AND AUTOMATED SURGICAL SYSTEMS

Abdujalilova Ruxshona Abdulkamol qizi

Tashkent State Medical University

Faculty of General Medicine No.1, student of group 119

Tashkent, Uzbekistan

Phone number: +998934440823

Fazliddin Arzikulov

Assistant of the Department of Biomedical Engineering, Informatics, and Biophysics at

Tashkent State Medical University

Abstract

Robotics and automated systems in surgery have revolutionized modern medicine in recent years. This article analyzes the fundamental principles of robotic surgery, types of systems, and their advantages in surgical practice. The use of robotics enhances surgical precision, patient safety, and accelerates recovery. Additionally, current trends in automated systems and their future potential in medicine are discussed.

Keywords: Robotics, surgery, automated systems, minimally invasive procedures, medical technology, patient safety.

Introduction

Surgical practice has always been recognized as a complex and high-risk process throughout human history, requiring the highest level of precision and safety to preserve patient life [3]. In recent years, advances in medical technology have

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

elevated surgery to a new stage: robotic and automated surgical systems have made operations significantly safer, more efficient, and minimally invasive [1]. These technologies allow surgeons to perform complex maneuvers with precision, gain a broader view of the operative field, and minimize human error [5].

Robotic systems are primarily used in two major areas of surgical practice: performing minimally invasive procedures and executing delicate manipulations in complex anatomical regions [2]. They are equipped with high-precision sensors, 3D visualization, and force-optimizing mechanisms, enabling surgeons to conduct intricate procedures safely and effectively [4]. At the same time, robotic systems play a crucial role in enhancing patient safety, reducing blood loss, and accelerating the recovery process [6].

Automated surgical systems help standardize multiple stages of the surgical workflow, thereby reducing operation time and alleviating surgeon fatigue [1]. These systems provide real-time monitoring of procedures, optimize movements, and continuously track patient condition, which is essential for ensuring high safety standards during complex surgeries [3].

Tele-surgery and remotely controlled robotic systems are creating new opportunities in modern medicine [5]. Remote operation allows surgeons to overcome geographic limitations, perform surgeries in areas lacking highly skilled specialists, and improve the quality of healthcare. Additionally, tele-surgery serves as a convenient platform for advanced technology training and skill development [2].

Studies indicate that minimally invasive procedures performed with robotic assistance result in faster patient recovery, reduced blood loss, and lower post-operative complications compared to traditional methods [6]. Moreover, the integration of robotic systems enhances the efficiency of surgical practice, establishing new standards for both surgeons and patients [4].

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

As a result, the development of robotic and automated systems in surgery is not only a technological advancement but also directly related to patient safety, surgical precision, and improved clinical outcomes. Their widespread implementation in clinical practice marks a new era in medicine, serving as an essential component of innovative and modern healthcare [1]. Robotic and automated systems represent a pivotal tool in preserving human life and further improving surgical quality [3].

Materials and Methods

This study aimed to investigate the efficiency and applicability of robotic and automated systems in surgical practice. The research materials included modern robotic surgical systems, their technical specifications, clinical applications, and outcomes from minimally invasive procedures. Additionally, various surgical operations performed with robotic assistance, as well as patient recovery and post-operative conditions, were analyzed.

Descriptive and analytical approaches were employed as research methods. The structure of robotic systems, sensors, manipulators, visualization, and control mechanisms were thoroughly examined. The operational principles of automated surgical systems, real-time monitoring, and methods for optimizing surgical procedures were also analyzed.

To assess the effectiveness of minimally invasive procedures, clinical practice and laboratory data were compared. Parameters such as blood loss, operation duration, post-operative recovery, and overall patient condition in surgeries performed with robotic systems were evaluated. These methods allowed for a comparative analysis of the efficiency between robotic and conventional surgical techniques.

A systematic analysis and functional evaluation were applied as the methodological approach. The advantages and limitations of different robotic system models were compared, and their clinical applications, as well as accuracy

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

and safety during surgical procedures, were assessed. Furthermore, the interaction of these systems with human factors and the impact of surgeon expertise were analyzed.

During the study, the innervation and control mechanisms of surgical robots, manipulator movements, and force distribution were examined in detail. The 3D visualization and real-time monitoring capabilities of robotic systems were analyzed for their role in enhancing decision-making quality during surgical procedures.

By summarizing and comparing the collected data, the efficiency, safety, and impact of robotic and automated surgical systems on patient recovery in clinical practice were determined. The study design was descriptive and analytical, aimed at systematically highlighting the role and significance of robotic and automated systems in surgical practice.

Results and Discussion

The study results indicate that robotic systems significantly enhance the precision of surgical procedures. In minimally invasive surgery, manipulations performed with robotic assistance reduce patient recovery time, decrease the risk of blood loss, and lower the likelihood of post-operative complications. This demonstrates that robotic systems are an effective tool for improving patient safety.

Analyses show that automated systems enable surgeons to operate with high accuracy in complex anatomical regions. Robotic manipulators allow for small and delicate movements, which improve surgical outcomes compared to conventional procedures. Additionally, these systems facilitate procedure optimization through real-time monitoring, enhancing the overall quality of surgical interventions.

Clinical observations reveal that robotic surgical systems shorten operation times and accelerate patient recovery. With these technologies, the efficiency of

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

minimally invasive procedures increases, patients experience less post-operative pain, and the risk of complications is substantially reduced.

The analytical approach also shows that while the effectiveness of robotic systems is directly related to the surgeon's expertise, these systems play a crucial role in reducing human error and enhancing surgical safety. Automated systems standardize the surgical process and enable precise execution of complex manipulations.

Furthermore, tele-surgery and remotely controlled robotic systems prove effective even in challenging geographic conditions. This capability allows medical services to reach areas lacking highly skilled specialists. The study indicates that tele-surgery has the potential to elevate surgical practice globally in the future.

In conclusion, the clinical application of robotic and automated surgical systems improves surgical quality, ensures patient safety, and represents a key component of innovative approaches in medicine. These technologies will enable future surgical practice to become more efficient, safe, and advanced.

Conclusions

Robotic and automated systems in surgery hold revolutionary significance in modern medicine. The use of robotic systems enhances surgical precision, accelerates patient recovery in minimally invasive procedures, and reduces the risk of post-operative complications. Automated systems optimize the surgeon's movements, minimize human error, and allow for the execution of complex anatomical manipulations. Additionally, tele-surgery overcomes geographic limitations and provides high-quality medical care to patients. Robotic and automated systems serve as a crucial tool in clinical practice, improving efficiency, ensuring patient safety, and enhancing surgical quality.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

References:

1. Kozlov Y.A. et al. — Contemporary robotic surgical systems: A preliminary review
<https://rps-journal.ru/jour/article/view/1878>
2. A systematic review of robotic surgery: From supervised paradigms to fully autonomous robotic approaches — PubMed
<https://pubmed.ncbi.nlm.nih.gov/34953033/>
3. A review of robotics in surgery — PubMed
<https://pubmed.ncbi.nlm.nih.gov/10718057/>
4. ZEUS robotic surgical system — Wikipedia
https://en.wikipedia.org/wiki/ZEUS_robotic_surgical_system
5. History of robotic surgery: Trends in autonomy levels and enabling technologies — ScienceDirect
<https://www.sciencedirect.com/science/article/pii/B9780443132711000364>
6. The role of remote surgery and robotic technologies in medicine — Journal
<https://journalss.org/index.php/ust/article/view/353>
7. Safaeva, S. (2020). Investment in the tourism sector: the pandemic and its impact. Архив научных исследований, (32).
8. Rikhsibaevna, S. S., Xalilullaevna, M. D., & Farmonovna, O. H. (2020). Investment in the tourism sector: The pandemic and its impact. South Asian Journal of Marketing & Management Research, 10(6), 23-29.
9. Rikhsibaevna, S. S. (2025). Environmental sustainability in tourism: perspectives for Uzbekistan. Labor economics and human capital, 4(3), 176-185.
10. Sayyora, S. (2024). Analyzing Resource Allocation and Management in the Uzbekistan Hotel Industry Within the Context of Cloud, Distributed, and Parallel Systems. International Journal of Biological Engineering and Agriculture, 3(1), 118-128.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

11. Сафаева, С. Р. (2021). Основные аспекты совершенствования сферы туризма в период мировой пандемии. Тенденции развития науки и образования, (79), 3.
12. Safaeva, S., & Talipova, N. (2020). Problems Of Using Matrix Models In Strategic Decision Making. Архив научных исследований, (17).
13. Rasulova, N. F., Jalilova, G. A., & Mukhamedova, N. S. (2023). PREVENTION OF IMPORTANT NON-COMMUNICABLE DISEASES AMONG THE POPULATION. Евразийский журнал медицинских и естественных наук, 3(1 Part 2), 2123.
14. Мирзаева, М. А., & Расулова, Н. Ф. (2014). Компьютеризация рабочего места медицинских сестер стационара. Сборник статей и тезисов.
15. Расулова, Н. Ф., & Асадова, Г. А. (2023). ИЗУЧЕНИЕ ОСОБЕННОСТИ ЗДОРОВЬЕСОХРАНЯЮЩЕГО ПОВЕДЕНИЯ И САМООЦЕНКИ ЗДОРОВЬЯ СТУДЕНТОВ. Science and innovation, 2(Special Issue 8), 978-980.
16. Джалилов, Э., Мамедова, Г. Б., Расулова, Н. Ф., & Назарова, Н. Б. (2015). Организация мониторинга заболеваемости органа зрения у детей от родственных браков, обучающихся в школе-интернате слепых и слабовидящих. Молодой ученый, (2), 58-60.
17. Мухамедова, Н. С., & Расулова, Н. Ф. (2022, May). Основы охраны материнства и детства в Республике Узбекистан. In Биоэтика и право" Материалы международной научно-практической конференции, Ташкент (pp. 123-127).
18. Djalilova, G., Rasulova, N., & Muxamedova, N. (2022). Hygienic, Medical and Social Aspects of Health Studies of Different Population Groups. Science and innovation, 1(D4), 196-199.
19. Rasulova, N., Abdullaev, K., & Kuddusova, K. (2024). THE INTEGRATED APPROACH TO THE TREATMENT OF PATIENTS WITH ATROPHIC RHINITIS WHO HAVE COVID-19. Science and innovation, 3(D7), 56-60.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

20. Расулова, Н. Ф., Мухамедова, Н. С., & Максудова, Н. А. (2017). К вопросу гигиенического прогнозирования качества воды водоёмов в Узбекистане. Проблемы науки, (2 (15)), 89-93.
21. Rasulova, N., & Azamatova, F. (2024). Implementing Methods Of Promotion Of Healthy Lifestyle Among Adolescents. TEXAS JOURNAL OF MEDICAL SCIENCE Учредители: Zien Journals Publishing, 39, 13-15.
22. Джалилова, Г. А., Расулова, Н. Ф., & Оташехов, З. И. (2024). АКТИВНЫЙ ОБРАЗ ЖИЗНИ В НАСТОЯЩЕМ–ВКЛАД В ЗДОРОВЬЕ В БУДУЩЕМ. Eurasian Journal of Medical and Natural Sciences, 4(1-2), 144-146.
23. Расулова, Н. Ф., & Аминова, А. А. (2023). ЗНАЧЕНИЕ ПОЛНОЦЕННОГО ПИТАНИЯ ДЕТСКОГО ВОЗРАСТА В ПРОФИЛАКТИКЕ И ЛЕЧЕНИИ РЯДА ЗАБОЛЕВАНИЙ. «МИКРОБИОЛОГИЯНИНГ ДОЛЗАРБ МУАММОЛАРИ» МАВЗУСИДАГИ РЕСПУБЛИКА ИЛМИЙ-АМАЛИЙ АНЖУМАНИ, 135.
24. Файзиева, М. Ф., Расулова, Н. Ф., & Эшдавлатов, Б. М. (2023). ОРГАНИЗАЦИЯ ТРУДА И СИНДРОМ ХРОНИЧЕСКОЙ УСТАЛОСТИ. Science and innovation, 2(Special Issue 8), 1982-1983.
25. Расулова, Н. Ф., Мирдадаева, Д. Д., & Одилова, М. А. (2023). РАЗВИТИЕ ПОЗНАВАТЕЛЬНОЙ АКТИВНОСТИ СТУДЕНТОВ ВУЗА В ПРОЦЕССЕ ПРОБЛЕМНОГО ОБУЧЕНИЯ. Science and innovation, 2(Special Issue 8), 1979-1981.
26. Искандарова, Ш., Расулова, Н., & Аминова, А. (2023). Установление здорового образа жизни–путь к укреплению здоровья. Science and innovation, 2(Special Issue 8), 1904-1907.
27. Джалилова, Г. А., Расулова, Н. Ф., & Мухамедова, Н. С. (2023). Охрана материнства и детства в Республике Узбекистан. Science and innovation, 2(Special Issue 8), 1971-1974.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

28. Rasulova, N., Nazarova, S., Asadova, G., Otashexov, Z., Mirdadayeva, D., & Yigitalieva, R. (2023). Social and pedagogical foundations of effective adaptation of students to an educational institution. In BIO Web of Conferences (Vol. 65, p. 10012). EDP Sciences.
29. Rasulova, N., & Shorustamova, M. (2023). Healthy lifestyle is health through education. Science and innovation, 2(D6), 24-26.
30. Rasulova, N., Aminova, A., & Ismailova, F. (2023). Improvement of early diagnosis and prevention measures of kidney stone diseases among the population. Science and innovation, 2(D3), 61-66.