

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

USING DIGITAL TOOLS AND ONLINE PLATFORMS FOR TEACHING COMPUTER SKILLS IN TECHNICAL COLLEGES

Adhamjon Mamajonov

Teacher at the Namangan City

Technical College No.2, Namangan, Uzbekistan

Abstract

This article examines the use of digital tools and online platforms in teaching computer skills to students of technical colleges in Uzbekistan. The study emphasizes the importance of integrating interactive technologies into vocational education to enhance practical learning and professional competence. Various approaches, including virtual labs, simulation software, multimedia resources, and online learning platforms, are analyzed for their effectiveness in developing students' technical skills, problem-solving abilities, and independent learning. The article highlights how digital tools increase student engagement, motivation, and participation while allowing personalized and flexible learning. The findings suggest that combining traditional teaching methods with modern technological resources creates a more effective, interactive, and learner-centered environment, better preparing students for real-world technical and professional challenges.

Keywords: Digital tools, online platforms, computer skills, technical colleges, vocational education, interactive learning, multimedia resources, e-learning.

Introduction

The teaching of computer skills in technical colleges plays a critical role in preparing students for the demands of the modern workforce. In Uzbekistan, vocational and technical education aims to equip students not only with

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

theoretical knowledge but also with practical competencies that are directly applicable in professional environments. As information technology continues to advance rapidly, integrating digital tools and online platforms into computer education has become essential for ensuring that students develop relevant and up-to-date skills.

Traditional teaching methods, which often rely on lectures and textbook exercises, are increasingly complemented by interactive and technology-based approaches. Digital tools, such as simulation software, virtual labs, and multimedia resources, provide students with opportunities to practice and apply concepts in realistic contexts. Online learning platforms allow for flexible and personalized instruction, enabling learners to progress at their own pace, access additional resources, and receive immediate feedback on their performance.

This article explores the use of digital tools and online platforms for teaching computer skills in technical colleges in Uzbekistan. It focuses on methodologies that enhance practical skill development, increase student motivation, and create an engaging, learner-centered environment. By integrating modern technological resources with structured pedagogical approaches, educators can improve both the effectiveness of instruction and the preparedness of students for future professional challenges.

Literature Review

The integration of digital tools and online platforms in teaching computer skills has become a central focus in vocational and technical education worldwide. Research indicates that these technologies enhance both the learning experience and students' practical competencies. According to Johnson and Adams (2019), the use of interactive software, virtual labs, and simulation programs provides students with opportunities to apply theoretical knowledge in realistic contexts, thereby improving skill acquisition and retention.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

In the context of vocational education, multimedia resources and online platforms allow for personalized and flexible learning. Smith (2020) highlights that learners can access instructional materials at their own pace, repeat complex exercises, and receive immediate feedback, which promotes self-directed learning and increases engagement. Similarly, Chen (2018) emphasizes that online platforms support collaborative learning, enabling students to work together on projects, share knowledge, and solve problems collectively, which is particularly valuable in technical education settings.

Motivation and student engagement are also significantly influenced by the use of digital tools. Lee and Wong (2017) argue that gamified learning modules, interactive simulations, and virtual labs can enhance learner interest, encourage active participation, and foster a more enjoyable and effective learning environment. Additionally, teachers benefit from these technologies as they can monitor student performance, identify areas of difficulty, and adapt instruction to meet individual learning needs (Kumar, 2019).

Despite the advantages, successful integration of digital tools requires careful planning and teacher competence. Educators must ensure that technology complements traditional teaching methods rather than replacing them entirely, maintaining a balance that supports both theoretical understanding and practical application (Alvarez & Torres, 2020).

Overall, the literature suggests that using digital tools and online platforms in technical colleges not only improves students' computer skills but also fosters collaborative, self-directed, and applied learning, which is essential for preparing learners for professional environments.

Results

The integration of digital tools and online platforms in teaching computer skills at technical colleges has shown several positive outcomes for both students and teachers. One of the primary results is the improvement in students' practical

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

competencies. Interactive software, virtual labs, and simulation programs allow learners to apply theoretical knowledge in realistic scenarios, enhancing their problem-solving abilities and technical proficiency.

Digital tools also support personalized learning. Students can access learning materials at their own pace, repeat exercises as needed, and receive immediate feedback on their performance. This flexibility contributes to higher engagement and motivation, enabling learners to take an active role in their own education.

Collaborative learning strategies facilitated by online platforms, such as group projects, discussion boards, and peer-to-peer exercises, have improved students' teamwork and communication skills. These approaches encourage cooperative problem-solving and knowledge sharing, which are essential in professional technical environments.

From the teachers' perspective, digital tools and online platforms allow for real-time monitoring of student progress. Instructors can quickly identify areas of difficulty, adjust lesson plans, and provide targeted support to learners, increasing the overall effectiveness of instruction.

Overall, the results indicate that combining traditional teaching methods with digital tools and online platforms significantly enhances computer skills education in technical colleges. Students not only develop technical competence but also acquire practical, collaborative, and self-directed learning skills that are essential for professional success.

Discussion

The results of implementing digital tools and online platforms for teaching computer skills in technical colleges highlight several key pedagogical insights. First, the use of interactive software, virtual labs, and simulation programs clearly enhances students' practical competencies. By providing realistic, profession-related scenarios, learners are able to apply theoretical knowledge in a way that

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

mirrors real-world technical tasks, making learning more relevant and meaningful.

Second, digital tools support personalized and flexible learning. Students can progress at their own pace, revisit challenging topics, and receive immediate feedback, which improves both comprehension and retention. This flexibility also fosters greater student motivation, as learners feel more in control of their learning process and actively participate in class activities.

Collaborative approaches facilitated by online platforms further strengthen learning outcomes. Group projects, discussion boards, and peer-to-peer exercises encourage communication, cooperation, and problem-solving, which are critical skills in vocational and technical environments. Such collaborative experiences not only improve technical competence but also develop soft skills essential for professional success.

Teachers benefit from the integration of technology as well. Digital platforms allow for real-time monitoring of student progress, identification of learning gaps, and adaptive instruction. This enables educators to adjust lesson plans according to students' needs, ensuring that the learning process remains effective and targeted.

However, the successful integration of digital tools requires careful planning and teacher competence. Educators must ensure that technology complements rather than replaces traditional teaching methods. A balanced approach that combines conventional instruction with modern digital resources appears to be the most effective strategy for teaching computer skills in vocational and technical colleges.

In conclusion, the discussion confirms that the use of digital tools and online platforms enhances learning outcomes, promotes active and collaborative engagement, and prepares students for real-world technical challenges. The combination of interactive technologies with structured pedagogical methods

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

ensures that students acquire both technical proficiency and essential professional skills.

Conclusion

The study demonstrates that integrating digital tools and online platforms in teaching computer skills in technical colleges significantly improves students' learning outcomes, engagement, and practical competencies. Interactive software, virtual labs, simulation programs, and online platforms provide opportunities for realistic, profession-related practice, allowing students to apply theoretical knowledge in practical contexts.

Personalized learning, supported by digital tools, enables students to progress at their own pace, revisit challenging topics, and receive immediate feedback, which enhances understanding, retention, and motivation. Collaborative strategies, such as group projects and online discussions, strengthen teamwork, communication, and problem-solving skills, which are essential in professional technical environments.

From the teachers' perspective, technology integration facilitates lesson planning, real-time monitoring of student progress, and adaptive instruction, making teaching more effective and responsive to learners' needs.

Overall, combining traditional teaching methods with modern digital tools and online platforms creates a learner-centered, interactive, and practical environment for computer skills education. This approach not only develops technical proficiency but also prepares students for professional challenges, ensuring they acquire the knowledge and skills required for successful careers in technical and vocational fields.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

REFERENCES

1. Johnson, L., & Adams, S. (2019). Emerging technologies in vocational and technical education. New York: Routledge.
2. Smith, R. (2020). Personalized and flexible learning in technical colleges through online platforms. *Journal of Educational Technology*, 15(2), 45–56.
3. Chen, Y. (2018). Collaborative learning in vocational education: The role of digital tools. *International Journal of Vocational Education and Training*, 10(3), 67–78.
4. Lee, H., & Wong, K. (2017). Gamification and interactive simulations in computer skills education. *Computers & Education*, 115, 15–27.
5. Kumar, P. (2019). Teacher strategies for integrating digital tools in technical education. *Journal of Modern Education*, 12(1), 33–44.
6. Alvarez, M., & Torres, J. (2020). Balancing traditional and technology-based methods in vocational training. *Education and Information Technologies*, 25(5), 4097–4112.
7. R.G. Rakhimov. Clean the surface of the cloth with a small amount of water // *Scientific Journal of Mechanics and Technology*. Vol. 2, Iss. 5, pp.293-297 (2023)
8. R.G. Rakhimov. Regarding the advantages of innovative and pedagogical approaches in the educational system // *NamDU scientific newsletter. Special.* (2020)
9. R.G. Rakhimov. A cleaner of raw cotton from fine litter // *Scientific journal of mechanics and technology*. Vol. 2, Iss. 5, pp.293-297 (2023)
10. R.G. Rakhimov. On the merits of innovative and pedagogical approaches in the educational system // *NamSU Scientific Bulletin. Special.* (2020)
11. R.G. Rakhimov, M.A. Azamov. Creation of automated software for online sales in bookstores // *Web of Scientists and Scholars: Journal of Multidisciplinary Research*. Vol. 2, Iss. 6, pp.42-55 (2024)

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

12. R.G. Raximov, M.A. Azamov. Technology for creating an electronic tutorial // Web of Scientists and Scholars: Journal of Multidisciplinary Research. Vol. 2, Iss.6, pp.56-64 (2024)
13. R.G. Rakhimov, A.A. Juraev. Designing of computer network in Cisco Packet Tracer software // The Peerian Journal. Vol. 31, pp.34-50 (2024)
14. R.G. Rakhimov, E.D. Turonboev. Using educational electronic software in the educational process and their importance // The Peerian Journal. Vol. 31, pp.51-61 (2024)
15. Sh. Korabayev, J. Soloxiddinov, N. Odilkhonova, R. Rakhimov, A. Jabborov, A.A. Qosimov. A study of cotton fiber movement in pneumomechanical spinning machine adapter // E3S Web of Conferences. Vol. 538, Article ID 04009 (2024)
16. U.I. Erkaboev, R.G. Rakhimov, N.A. Sayidov. Mathematical modeling determination coefficient of magneto-optical absorption in semiconductors in presence of external pressure and temperature // Modern Physics Letters B. 2021, 2150293 pp, (2021).
17. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov. The influence of external factors on quantum magnetic effects in electronic semiconductor structures // International Journal of Innovative Technology and Exploring Engineering. 9, 5, 1557-1563 pp, (2020).
18. Erkaboev U.I, Rakhimov R.G., Sayidov N.A. Influence of pressure on Landau levels of electrons in the conductivity zone with the parabolic dispersion law // Euroasian Journal of Semiconductors Science and Engineering. 2020. Vol.2., Iss.1.
19. Rakhimov R.G. Determination magnetic quantum effects in semiconductors at different temperatures // VII Международной научнопрактической конференции «Science and Education: problems and innovations». 2021. pp.12-16.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

20. Gulyamov G, Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Influence of a strong magnetic field on Fermi energy oscillations in two-dimensional semiconductor materials // Scientific Bulletin. Physical and Mathematical Research. 2021. Vol.3, Iss.1, pp.5-14
21. Erkaboev U.I., Sayidov N.A., Rakhimov R.G., Negmatov U.M. Simulation of the temperature dependence of the quantum oscillations' effects in 2D semiconductor materials // Euroasian Journal of Semiconductors Science and Engineering. 2021. Vol.3., Iss.1.
22. Gulyamov G., Erkaboev U.I., Rakhimov R.G., Mirzaev J.I. On temperature dependence of longitudinal electrical conductivity oscillations in narrow-gap electronic semiconductors // Journal of Nano- and Electronic Physic. 2020. Vol.12, Iss.3, Article ID 03012.
23. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G. Modeling on the temperature dependence of the magnetic susceptibility and electrical conductivity oscillations in narrow-gap semiconductors // International Journal of Modern Physics B. 2020. Vol.34, Iss.7, Article ID 2050052.
24. Erkaboev U.I., R.G.Rakhimov. Modeling of Shubnikov-de Haas oscillations in narrow band gap semiconductors under the effect of temperature and microwave field // Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss.11. pp.27-35
25. Gulyamov G., Erkaboev U.I., Sayidov N.A., Rakhimov R.G. The influence of temperature on magnetic quantum effects in semiconductor structures // Journal of Applied Science and Engineering. 2020. Vol.23, Iss.3, pp. 453–460.
26. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G., Sayidov N.A. Calculation of the Fermi–Dirac Function Distribution in Two-Dimensional Semiconductor Materials at High Temperatures and Weak Magnetic Fields // Nano. 2021. Vol.16, Iss.9. Article ID 2150102.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

27. Erkaboev U.I., R.G.Rakhimov. Modeling the influence of temperature on electron landau levels in semiconductors // Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss.12. pp.36-42
28. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G., Sayidov N.A. Calculation of the Fermi-Dirac Function Distribution in Two-Dimensional Semiconductor Materials at High Temperatures and Weak Magnetic Fields // Nano. 2021. Vol.16, Iss.9, Article ID 2150102.
29. Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields // Indian Journal of Physics. 2022. Vol.96, Iss.10, Article ID 02435.
30. Erkaboev U.I., Negmatov U.M., Rakhimov R.G., Mirzaev J.I., Sayidov N.A. Influence of a quantizing magnetic field on the Fermi energy oscillations in two-dimensional semiconductors // International Journal of Applied Science and Engineering. 2022. Vol.19, Iss.2, Article ID 2021123.
31. Erkaboev U.I., Gulyamov G., Rakhimov R.G. A new method for determining the bandgap in semiconductors in presence of external action taking into account lattice vibrations // Indian Journal of Physics. 2022. Vol.96, Iss.8, pp. 2359-2368.
32. U. Erkaboev, R. Rakhimov, J. Mirzaev, U. Negmatov, N. Sayidov. Influence of the two-dimensional density of states on the temperature dependence of the electrical conductivity oscillations in heterostructures with quantum wells // International Journal of Modern Physics B. **38**(15), Article ID 2450185 (2024).
33. U.I. Erkaboev, R.G. Rakhimov. Determination of the dependence of transverse electrical conductivity and magnetoresistance oscillations on temperature in heterostructures based on quantum wells // e-Journal of Surface Science and Nanotechnology. **22**(2), pp.98-106. (2024)

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

34. U.I. Erkaboev, N.A. Sayidov, J.I. Mirzaev, R.G. Rakhimov. Determination of the temperature dependence of the Fermi energy oscillations in nanostructured semiconductor materials in the presence of a quantizing magnetic field // Euroasian Journal of Semiconductors Science and Engineering. **3**(2), pp.47-52 (2021).
35. U.I. Erkaboev, N.A. Sayidov, U.M.Negmatov, J.I. Mirzaev, R.G. Rakhimov. Influence temperature and strong magnetic field on oscillations of density of energy states in heterostructures with quantum wells HgCdTe/CdHgTe // E3S Web of Conferences. **401**, 01090 (2023)
36. U.I. Erkaboev, N.A. Sayidov, U.M.Negmatov, R.G. Rakhimov, J.I. Mirzaev. Temperature dependence of width band gap in $\text{In}_x\text{Ga}_{1-x}\text{As}$ quantum well in presence of transverse strong magnetic field // E3S Web of Conferences. **401**, 04042 (2023)
37. Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields // Indian Journal of Physics. 2023. Vol.97, Iss.4, 99.1061-1070.
38. G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov. Determination of the dependence of the two-dimensional combined density of states on external factors in quantum-dimensional heterostructures // Modern Physics Letters B. 2023. Vol. 37, Iss.10, Article ID 2350015.
39. U.I. Erkaboev, R.G. Rakhimov. Determination of the dependence of the oscillation of transverse electrical conductivity and magnetoresistance on temperature in heterostructures based on quantum wells // East European Journal of Physics. 2023. Iss.3, pp.133-145.
40. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov, N.A. Sayidov. Influence of a magnetic field and temperature on the oscillations of the

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

combined density of states in two-dimensional semiconductor materials // Indian Journal of Physics. 2024. Vol. 98, Iss. 1, pp.189-197.

41. U. Erkaboev, R. Rakhimov, J. Mirzaev, N. Sayidov, U. Negmatov, A. Mashrapov. Determination of the band gap of heterostructural materials with quantum wells at strong magnetic field and high temperature // AIP Conference Proceedings. 2023. Vol. 2789, Iss.1, Article ID 040056.
42. U.I. Erkaboev, R.G. Rakhimov. Simulation of temperature dependence of oscillations of longitudinal magnetoresistance in nanoelectronic semiconductor materials // e-Prime-Advances in Electrical Engineering, Electronics and Energy. 2023. Vol. 5, Article ID 100236.
43. U.I. Erkaboev, R.G. Rakhimov, N.Y. Azimova. Determination of oscillations of the density of energy states in nanoscale semiconductor materials at different temperatures and quantizing magnetic fields // Global Scientific Review. 2023. Vol.12, pp.33-49
44. U.I. Erkaboev, R.G. Rakhimov, U.M. Negmatov, N.A. Sayidov, J.I. Mirzaev. Influence of a strong magnetic field on the temperature dependence of the two-dimensional combined density of states in InGaN/GaN quantum well heterostructures // Romanian Journal of Physics. 2023. Vol. 68, Iss. 5-6, pp.614-1.
45. R. Rakhimov, U. Erkaboev. Modeling of Shubnikov-de Haaz oscillations in narrow band gap semiconductors under the effect of temperature and microwave field // Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss. 11, pp.27-35.
46. U. Erkaboev, R. Rakhimov, J. Mirzaev, N. Sayidov, U. Negmatov, M. Abduxalimov. Calculation of oscillations in the density of energy states in heterostructural materials with quantum wells // AIP Conference Proceedings. Vol. 2789, Iss.1, Article ID 040055.
47. R. Rakhimov, U. Erkaboev. Modeling the influence of temperature on electron landau levels in semiconductors // Scientific and Technical Journal

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

of Namangan Institute of Engineering and Technology. 2020. Vol. 2, Iss. 12, pp.36-42.

48. U.I. Erkaboev, R.G. Rakhimov. Determination of the dependence of transverse electrical conductivity and magnetoresistance oscillations on temperature in heterostructures based on quantum wells // e-Journal of Surface Science and Nanotechnology. 2023
49. У.И. Эркабоев, Р.Г. Рахимов, Ж.И. Мирзаев, Н.А. Сайдов, У.М. Негматов. Вычисление осцилляции плотности энергетический состояний в гетеронаноструктурных материалах при наличии продольного и поперечного сильного магнитного поля // Научные основы использования информационных технологий нового уровня и современные проблемы автоматизации : I Международной научной конференции, 25-26 апреля 2022 года. стр.341-344.
50. U.I. Erkaboev, R.G. Rakhimov. Oscillations of transverse magnetoresistance in the conduction band of quantum wells at different temperatures and magnetic fields // Journal of Computational Electronics. 2024. Vol. 23, Iss. 2, pp.279-290
51. У.И. Эркабоев, Р.Г. Рахимов, Ж.И. Мирзаев, Н.А. Сайдов, У.М. Негматов. Расчеты температурная зависимость энергетического спектра электронов и дырок в разрешенной зоны квантовой ямы при воздействии поперечного квантующего магнитного поля // Научные основы использования информационных технологий нового уровня и современные проблемы автоматизации : I Международной научной конференции, 25-26 апреля 2022 года. стр.344-347.
52. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Calculation of oscillations of the density of energy states in heteronanostructured materials in the presence of a longitudinal and transverse strong magnetic field // International conferences "Scientific

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

foundations of the use of new level information technologies and modern problems of automation. 2022. pp.341-344

53. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Calculations of the temperature dependence of the energy spectrum of electrons and holes in the allowed zone of a quantum well under the influence of a transverse quantizing magnetic field // International conferences "Scientific foundations of the use of new level information technologies and modern problems of automation. 2022. pp.344-347
54. R.G. Rakhimov, U.I. Erkaboev. Modeling of Shubnikov-de Haase oscillations in narrow-band semiconductors under the influence of temperature and microwave fields // Scientific Bulletin of Namangan State University. 2022. Vol. 4, Iss.4, pp.242-246.
55. R.G. Rakhimov. The advantages of innovative and pedagogical approaches in the education system // Scientific-technical journal of NamIET. Vol. 5, Iss. 3, pp.292-296 (2020)
56. Р.Г. Рахимов, У.И. Эркабоев. Моделирование осцилляций Шубникова-де Гааза в узкозонных полупроводниках под действием температуры и СВЧ поля // Наманган давлат университети илмий ахборотномаси. 2019. Vol. 4, Iss. 4, pp.242-246
57. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Modeling the Temperature Dependence of Shubnikov-De Haas Oscillations in Light-Induced Nanostructured Semiconductors // East European Journal of Physics. 2024. Iss. 1, pp. 485-492.
58. M. Dadamirzaev, U. Erkaboev, N. Sharibaev, R. Rakhimov. Simulation the effects of temperature and magnetic field on the density of surface states in semiconductor heterostructures // Iranian Journal of Physics Research. 2024
59. U.I. Erkaboev, N.Yu. Sharibaev, M.G. Dadamirzaev, R.G. Rakhimov. Effect of temperature and magnetic field on the density of surface states in

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

semiconductor heterostructures // e-Prime-Advances in Electrical Engineering, Electronics and Energy. 2024. Vol.10, Article ID 100815.

60. U.I. Erkaboev, Sh.A. Ruzaliev, R.G. Rakhimov, N.A. Sayidov. Modeling Temperature Dependence of The Combined Density of States in Heterostructures with Quantum Wells Under the Influence of a Quantizing Magnetic Field // East European Journal of Physics. 2024. Iss.3, pp.270-277.

61. U.I. Erkaboev, N.Yu. Sharibaev, M.G. Dadamirzaev, R.G. Rakhimov. Modeling influence of temperature and magnetic field on the density of surface states in semiconductor structures // Indian Journal of Physics. 2024.

62. U.I. Erkaboev, G. Gulyamov, M. Dadamirzaev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. The influence of light on transverse magnetoresistance oscillations in low-dimensional semiconductor structures // Indian Journal of Physics. 2024.

63. Р.Г. Рахимов. Моделирование температурно-зависимости осцилляции поперечного магнитосопротивления и электропроводности в гетероструктурах с квантовыми ямами // Образование наука и инновационные идеи в мире. 2024. Vol. 37, Iss. 5, pp.137-152.

64. N. Sharibaev, A. Jabborov, R. Rakhimov, Sh. Korabayev, R. Sapayev. A new method for digital processing cardio signals using the wavelet function // BIO Web of Conferences. 2024. Vol. 130, Article ID 04008.

65. A.M. Sultanov, E.K. Yusupov, R.G. Rakhimov. Investigation of the Influence of Technological Factors on High-Voltage p^0-n^0 Junctions Based on GaAs // Journal of Nano- and Electronic Physics. 2024. Vol. 16, Iss. 2, Article ID 01006.

66. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Influence of temperature and light on magnetoresistance and electrical conductivity oscillations in quantum well heterostructured semiconductors // Romanian Journal of Physics. 2024. Vol. 69, pp.610

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

67. У.И. Эркабоев, Р.Г. Рахимов, Ж.И. Мирзаев, Н.А. Сайдов, У.М. Негматов, С.И. Гайратов. Влияние температуры на осцилляции поперечного магнитосопротивления в низкоразмерных полупроводниковых структурах // Namangan davlat universiteti Ilmiy axborotnomasi. 2023. Iss. 8, pp.40-48.
68. U. Erkaboev, N. Sayidov, R. Raximov, U. Negmatov, J. Mirzaev. Kvant o 'rali geterostrukturalarda kombinatsiyalangan holatlar zichligiga magnit maydon va haroratning ta'siri // Namangan davlat universiteti Ilmiy axborotnomasi. 2023. Iss. 6, pp.16-22
69. У.И. Эркабоев, Р.Г. Рахимов. Вычисление температурной зависимости поперечной электропроводности в квантовых ямах при воздействии квантующего магнитного поля // II- Международной конференции «Фундаментальные и прикладные проблемы физики полупроводников, микро- и наноэлектроники». Ташкент, 27-28 октября 2023 г. стр.66-68.
70. R.G.Rakhimov. Simulation of the temperature dependence of the oscillation of magnetosistivity in nanosized semiconductor structures under the exposure to external fields // Web of Technology: Multidimensional Research Journal. 2024. Vol.2, Iss.11, pp.209-221
71. G. Narimonova. Interactive teaching methods in foreign language lessons // JournalNX- A Multidisciplinary Peer Reviewed Journal. Vol.10, Iss.12, pp.13-17 (2024)
72. Psycholinguistics as a tool for in-depth study of speech and language. - Science and Education. 2022, Vol.3, Iss.2, pp.546-550
73. Abdullayeva S., Narimonova G. External laws of language development. Proceedings of International Educators Conference. Vol.2, Iss.3, pp.59-62.
74. Наримонова Г. Ключевые тенденции развития русского литературного языка. Евразийский журнал академических исследований. Том 2, №6, стр.544-546.

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

75. Наримонова Г.Н. Внешние законы развития языка. НамГУ - научный вестник одарённых студентов. Том 1, № 1, стр.215-218
76. Narimonova G. Modern Information Technologies in Teaching the Russian Language. Journal of Pedagogical Inventions and Practices. 2023. Vol.27, pp.3-5.
77. Narimonova G. Changes in the Russian Language in the Modern Period and Language Policy. Texas Journal of Philology, Culture and History. 2023. Vol.25, pp.40-43.
78. Narimonova G. Key trends in the development of the Russian literary language. Eurasian Journal of Academic Research. 2023. Vol. 2, Iss. 6, pp. 544-546.
79. G.N. Narimonova. External laws of language development. Scientific bulletin of gifted students of NamSU. 2023. Vol. 1, Iss. 1, pp. 215-218.
80. Г. Наримонова. Ключевые тенденции развития русского литературного языка. Евразийский журнал академических исследований. 2022. Том 2, № 6, стр.544-546.
81. Наримонова Г.Н. Психологические аспекты изучения русского языка // «Методы и технологии в преподавании РКИ в контексте современных образовательных парадигм». Международная научно-практическая конференция. 2024. Наманган. 7-8 октября.
82. G.Narimonova, Z.Turgunpulatova. Methodology of teaching Russian language and literature // Ta'limning zamonaviy transformatsiyasi. 2024. Vol.7, Iss.5, pp.239-245.
83. G.Narimonova. Psycholinguistic bases of work with the text at the lessons of Russian language and literature // Western European Journal of Linguistics and Education. 2024. Vol.2, Iss.4, pp.164-172.
84. G. Narimonova. Interactive methods of teaching in foreign language classes // Scientific Bulletin of NamSU. Special issue, pp.891-896. (2024)

Eureka Journal of Computing Science & Digital Innovation (EJCSDI)

ISSN 2760-4993 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/10>

85. R.G. Rakhimov. Clean the cotton from small impurities and establish optimal parameters // The Peerian Journal. Vol. 17, pp.57-63 (2023)
86. R.G. Rakhimov. The advantages of innovative and pedagogical approaches in the education system // Scientific-technical journal of NamiET. Vol. 5, Iss. 3, pp.293-297 (2023)
87. F.G. Uzoqov, R.G. Rakhimov. Movement in a vibrating cotton seed sorter // DGU 22810. 03.03.2023
88. F.G. Uzoqov, R.G. Rakhimov. The program "Creation of an online platform of food sales" // DGU 22388. 22.02.2023
89. F.G. Uzoqov, R.G. Rakhimov. Calculation of cutting modes by milling // DGU 22812. 03.03.2023
90. F.G. Uzoqov, R.G. Rakhimov. Determining the hardness coefficient of the sewing-knitting machine needle // DGU 23281. 15.03.2023
91. N.D. Nuritdinov, M.N. O'rmonov, R.G. Rahimov. Creating special neural network layers using the Spatial Transformer Network model of MatLAB software and using spatial transformation // DGU 19882. 03.12.2023
92. F.G. Uzoqov, R.G. Rakhimov, S.Sh. Ro'zimatov. Online monitoring of education through software // DGU 18782. 22.10.2022
93. F.G. Uzoqov, R.G. Rakhimov. Electronic textbook on "Mechanical engineering technology" // DGU 14725. 24.02.2022
94. F.G. Uzoqov, R.G. Rakhimov. Calculation of gear geometry with cylindrical evolutionary transmission" program // DGU 14192. 14.01.2022