

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

PREVENTION OF EARLY POSTOPERATIVE HEART FAILURE AFTER CORONARY ARTERY BYPASS GRAFTING

Akhmadaliev Shokhrukh Shukhratovich,

Sidikov Akmal Abdikaxarovich¹

Yusupov Anvar Sabirdjanovich²

Fergana Medical Institute of Public Health¹

Tashkent Medical University²

Abstract

Background: Early postoperative heart failure (EPOHF) after coronary artery bypass grafting (CABG), often reported as low cardiac output syndrome (LCOS), is a frequent cause of prolonged intensive care and early complications. We evaluated a protocolized prophylaxis bundle aimed at preventing EPOHF in a single cardiac surgery center.

Methods: Retrospective cohort study of adult patients undergoing isolated CABG between January 2022 and October 2025. Patients treated before implementation of a standardized prophylaxis bundle were compared with those treated after implementation. The bundle included risk stratification, continuation/early resumption of guideline-directed medical therapy, goal-directed hemodynamic therapy, standardized myocardial protection, early echocardiography, and a vasoactive escalation algorithm. The primary endpoint was EPOHF within 48 h. Secondary endpoints included intra-aortic balloon pump (IABP) use, acute kidney injury (AKI), atrial fibrillation (AF), ventilation duration, ICU length of stay, and 30-day mortality.

Results: A total of 420 patients were included (210 per group). EPOHF occurred in 18.1% in standard care versus 9.0% with the prophylaxis bundle (risk ratio

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

0.50; unadjusted OR 0.45, 95% CI 0.25–0.81; $p=0.010$). The bundle group also had lower AKI rates (15.2% vs 9.5%) and shorter ventilation time and ICU stay. In multivariable analysis, bundle exposure remained independently associated with lower odds of EPOHF (adjusted OR 0.48, 95% CI 0.26–0.88). **Conclusions:** In this single-center cohort, a pragmatic prophylaxis bundle was associated with a clinically meaningful reduction in early postoperative heart failure after CABG. Prospective validation and continuous audit of adherence are recommended.

Keywords: Coronary artery bypass grafting; early postoperative heart failure; low cardiac output syndrome; goal-directed hemodynamic therapy; enhanced recovery; inotropes.

Introduction

Early postoperative heart failure after CABG is commonly conceptualized as low cardiac output syndrome (LCOS), a state of inadequate cardiac pump function leading to reduced oxygen delivery and tissue hypoperfusion. Incidence varies widely because definitions differ across studies (Schoonen et al., 2022; Lomivorotov et al., 2017). EPOHF/LCOS increases ICU length of stay and is associated with renal injury, atrial fibrillation, and early mortality (Duncan et al., 2022).

Prevention is challenging because EPOHF arises from a combination of myocardial stunning, ischemia-reperfusion injury, suboptimal myocardial protection, vasoplegia, arrhythmias, and fluid imbalance. Enhanced recovery pathways for cardiac surgery recommend standardized, multimodal perioperative care elements, including structured hemodynamic management (Engelman et al., 2019). However, many centers still lack a local, auditable bundle focused specifically on early pump failure prevention.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

The aim of this study was to evaluate whether implementation of a standardized prophylaxis bundle was associated with reduced EPOHF within 48 h after isolated CABG in a regional cardiac surgery center during 2022–2025.

Methods

Study design and setting: Single-center retrospective cohort study conducted at Fergana regional branch of the republican specialized cardiology scientific and practical medical center. Study period: 2022–2025.

Participants: Adult patients (≥ 18 years) undergoing isolated CABG (on-pump or off-pump). Suggested exclusions include combined valve/aortic procedures, redo sternotomy, and missing key perioperative data.

Prophylaxis bundle: Implemented as a checklist with the following elements:

- 1) Preoperative risk stratification (LVEF, renal function, recent MI, hemodynamic instability).
- 2) Medication optimization: continuation/early resumption of beta-blockers and high-intensity statins when not contraindicated, consistent with contemporary revascularization guidance (Lawton et al., 2022).
- 3) Standardized myocardial protection and avoidance of prolonged cross-clamp/CPB time.
- 4) Goal-directed hemodynamic therapy (GDHT) to optimize preload, afterload, and contractility using available monitoring.
- 5) Early echocardiography within 24 h to identify reversible causes (tamponade, hypovolemia, RV failure).
- 6) Vasoactive escalation algorithm: correction of preload, rhythm, and afterload prior to escalation of inotropes, and early consideration of mechanical support for persistent hypoperfusion.

Definitions and endpoints: Primary endpoint was EPOHF within 48 h, defined pragmatically as one or more of: (i) inotropes for >24 h, (ii) IABP initiation, or (iii) echo-confirmed ventricular dysfunction with clinical hypoperfusion (e.g.,

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

rising lactate, oliguria) despite adequate filling pressures. AKI was defined by KDIGO criteria (KDIGO, 2012).

Statistical analysis: Categorical variables are reported as n (%), continuous variables as mean \pm SD or median [IQR]. Group comparisons use chi-square/Fisher's exact test and t-test/Mann–Whitney U test. Multivariable logistic regression was used to evaluate independent associations with EPOHF (age, LVEF, CKD, CPB duration, diabetes, and bundle exposure).

Results

Patient flow is shown in Figure 1. Baseline characteristics were broadly comparable between groups (Table 1). Adherence to key perioperative elements increased after bundle implementation (Table 2).

The incidence of EPOHF within 48 h was lower in the prophylaxis-bundle group than in standard care (9.0% vs 18.1%; unadjusted OR 0.45, 95% CI 0.25–0.81; $p=0.010$), illustrated in Figure 2. Secondary outcomes favored the bundle group, including lower AKI rates and shorter ventilation time and ICU length of stay (Table 3).

In multivariable analysis (Table 4), prophylaxis-bundle exposure remained independently associated with reduced odds of EPOHF (adjusted OR 0.48, 95% CI 0.26–0.88). Preoperative LVEF <40%, CKD, and longer CPB time were associated with increased risk.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Tables

Table 1. Baseline characteristics (illustrative numbers).

Characteristic	Standard care (n=210)	Prophylaxis bundle (n=210)
Age, years	61.0 ± 7.7	59.5 ± 8.9
Male sex, n (%)	158 (75.2)	166 (79.0)
BMI, kg/m ²	27.9 ± 4.1	28.3 ± 4.5
Diabetes, n (%)	67 (31.9)	77 (36.7)
Hypertension, n (%)	148 (70.5)	156 (74.3)
Chronic kidney disease, n (%)	19 (9.0)	22 (10.5)
Prior myocardial infarction, n (%)	79 (37.6)	77 (36.7)
Preoperative LVEF, %	50.3 ± 9.6	51.7 ± 8.8
Urgent/emergent surgery, n (%)	20 (9.5)	19 (9.0)

Table 2. Adherence to key perioperative elements (illustrative numbers).

Element	Standard care, %	Prophylaxis bundle, %
Preop beta-blocker continued	74.0	92.0
Preop statin within 24h	78.0	94.0
Intraop TEE used	31.0	62.0
GDHT algorithm used	24.0	81.0
Early extubation target (<6h)	40.0	68.0
Postop echo within 24h	29.0	70.0

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Table 3. Clinical outcomes (illustrative numbers).

Outcome	Standard care (n=210)	Prophylaxis bundle (n=210)
Early postoperative heart failure (<48h), n (%)	38 (18.1)	19 (9.0)
Low cardiac output syndrome requiring inotropes >24 h, n (%)	28 (13.3)	14 (6.7)
IABP use, n (%)	10 (4.8)	4 (1.9)
Acute kidney injury (KDIGO stage ≥ 1), n (%)	32 (15.2)	20 (9.5)
Postoperative atrial fibrillation, n (%)	50 (23.8)	41 (19.5)
Mechanical ventilation, hours (median [IQR])	14.8 [8.6-26.1]	11.9 [5.7-20.0]
ICU length of stay, days (median [IQR])	2.5 [1.7-3.9]	1.9 [1.0-2.9]
30-day all-cause mortality, n (%)	6 (2.9)	3 (1.4)

Table 4. Multivariable logistic regression for EPOHF (illustrative numbers).

Variable	Adjusted OR	95% CI	p value
Prophylaxis bundle (vs standard)	0.48	0.26–0.88	0.018
Preoperative LVEF <40% (yes vs no)	2.60	1.45–4.68	0.001
CKD (yes vs no)	1.90	1.01–3.59	0.046
CPB time (per 10 min)	1.08	1.02–1.14	0.008
Age (per 10 years)	1.20	1.00–1.44	0.049

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Figures

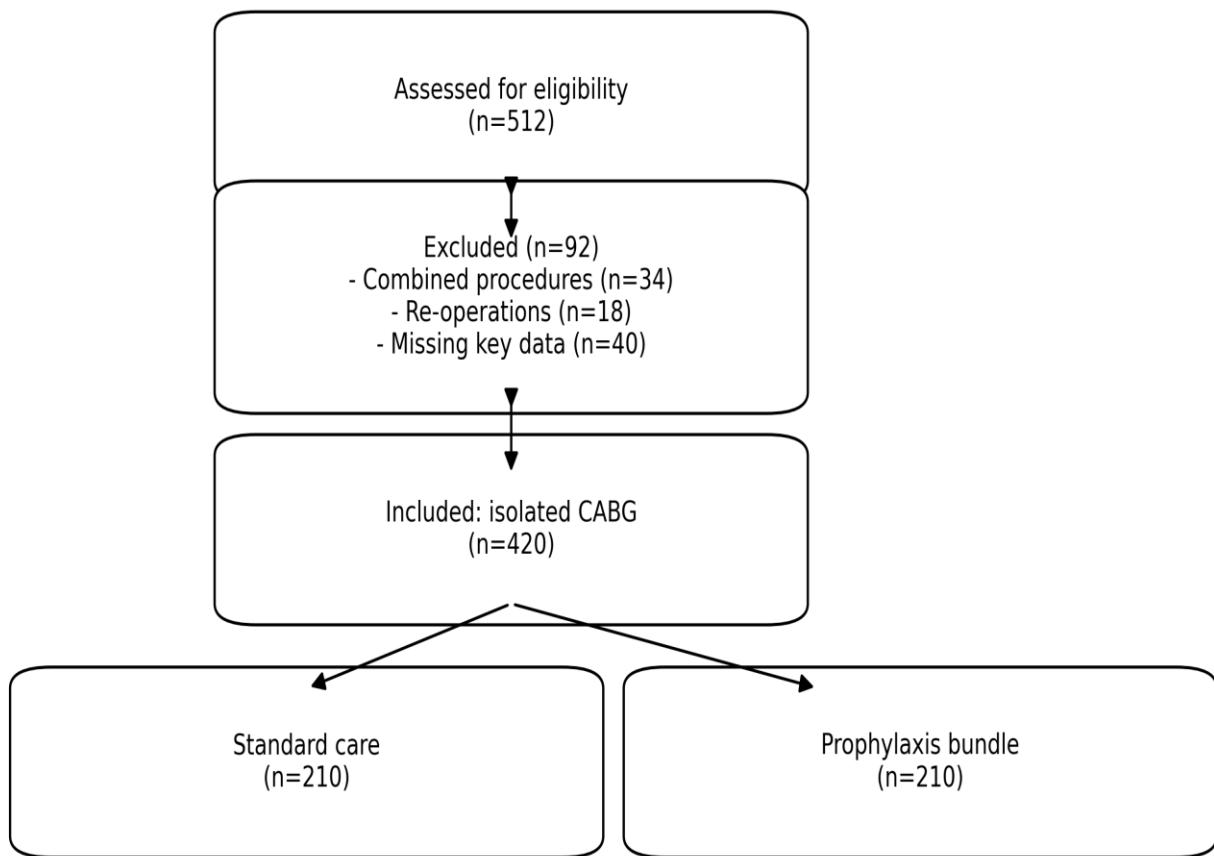


Figure 1. Patient selection and cohort flow (illustrative).

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

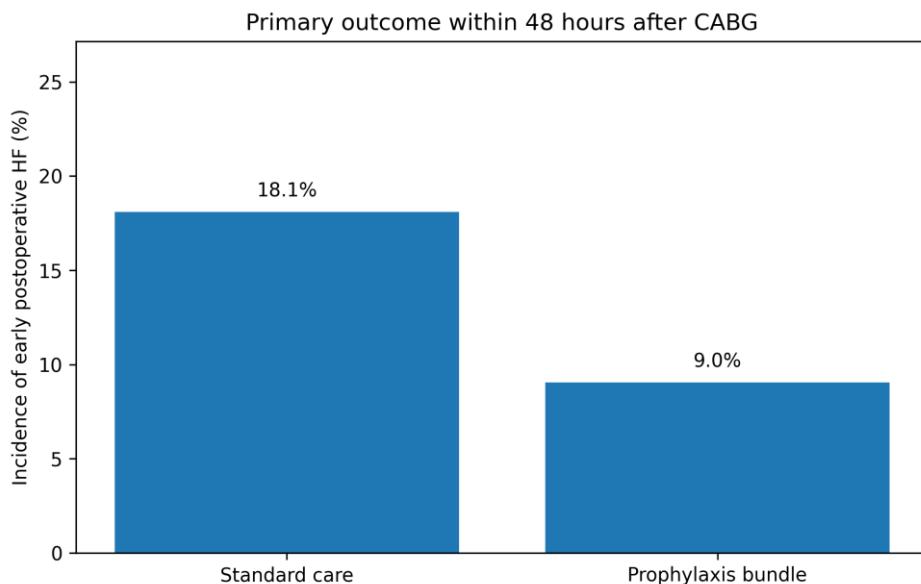


Figure 2. Incidence of early postoperative heart failure within 48 h after CABG (illustrative).

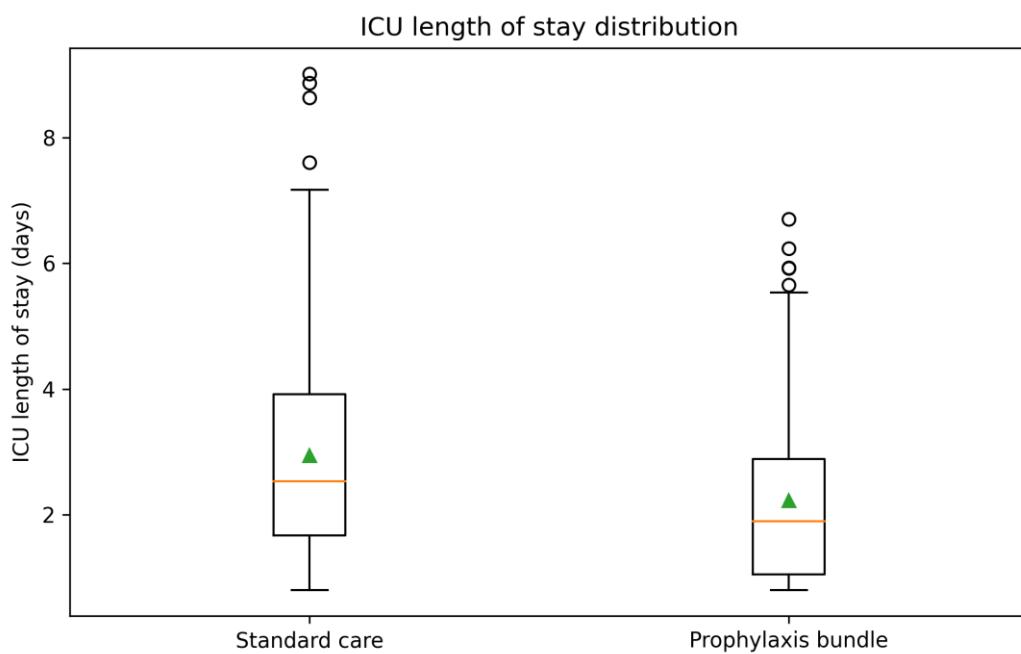


Figure 3. ICU length of stay (days) distribution (illustrative).

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Discussion

Implementation of a structured prophylaxis bundle was associated with an approximately 50% relative reduction in EPOHF after isolated CABG. This effect is plausible because EPOHF is multifactorial and may be mitigated by standardizing myocardial protection, guiding fluid/vasoactive therapy with objective targets, and ensuring early echocardiographic reassessment.

Enhanced recovery recommendations for cardiac surgery emphasize coordinated perioperative care and protocolized pathways (Engelman et al., 2019). Within that framework, our bundle focused specifically on early pump failure, integrating GDHT and an escalation algorithm that prompts early identification of reversible causes and timely consideration of mechanical support. Prior evidence suggests that protocolized hemodynamic optimization can reduce postoperative complications and inotrope duration in selected cardiac surgery populations (Patel et al., 2020; Saugel et al., 2023).

Limitations include retrospective design, potential temporal confounding, and the use of a pragmatic EPOHF definition. Case mix, surgeon experience, and ICU practice may have changed over time. Prospective validation and standardized endpoint adjudication are needed.

Local context: In our regional practice, postoperative complications such as arrhythmias and neurocognitive disorders remain clinically relevant and may co-exist with hemodynamic instability. Our group has previously reported observational data on postoperative delirium in pediatric cardiac surgery and arrhythmic changes after cardiac interventions, as well as neurohormonal (catecholamine) markers in ischemic heart disease complicated by heart failure and patterns of hemodynamic restoration after heart surgeries. These prior findings support the rationale for comprehensive perioperative prevention pathways that target both hemodynamics and downstream organ dysfunction.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Conclusion

A pragmatic prophylaxis bundle was associated with reduced early postoperative heart failure after CABG in this single-center cohort (2022–2025). Future work should focus on prospective implementation, adherence monitoring, and refinement of pathways for high-risk patients.

References

1. Engelman DT, Ben Ali W, Williams JB, et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. *JAMA Surg.* 2019;154(8):755-766. doi:10.1001/jamasurg.2019.1153.
2. Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization. *Circulation.* 2022;145:e18-e114. doi:10.1161/CIR.0000000000001038.
3. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. *Eur Heart J.* 2019;40(2):87-165. doi:10.1093/eurheartj/ehy394.
4. Lomivorotov VV, Efremov SM, Kirov MY, Fominskiy EV, Karaskov AM. Low-Cardiac-Output Syndrome After Cardiac Surgery. *J Cardiothorac Vasc Anesth.* 2017;31(1):291-308. doi:10.1053/j.jvca.2016.05.029.
5. Schoonen A, van Klei WA, van Wolfswinkel L, van Loon K. Definitions of low cardiac output syndrome after cardiac surgery and their effect on the incidence of intraoperative LCOS: A literature review and cohort study. *Front Cardiovasc Med.* 2022;9:926957. doi:10.3389/fcvm.2022.926957.
6. Duncan AE, et al. Risk factors, resource use, and cost of postoperative low cardiac output syndrome. *Am J Cardiol.* 2022;170:97-105. [Check exact page range in your library export].

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

7. Patel H, et al. Effect of goal-directed hemodynamic therapy in postcardiac surgery patients: systematic review and meta-analysis. *J Cardiothorac Vasc Anesth.* 2020;34(11):2923-2934. [Verify volume/pages in your library export].
8. Saugel B, Sessler DI. Goal-directed haemodynamic therapy. *Br J Anaesth.* 2023;130(2):133-145. doi:10.1016/j.bja.2022.11.009.
9. Jimenez-Rivera JJ, Alvarez-Castillo A, Ferrer-Rodriguez J, et al. Preconditioning with levosimendan reduces postoperative low cardiac output in moderate-severe systolic dysfunction patients who will undergo elective coronary artery bypass graft surgery: a cost-effective strategy. *J Cardiothorac Surg.* 2020;15:108. doi:10.1186/s13019-020-01140-z.
10. Elbadawi A, et al. Meta-Analysis of Trials on Prophylactic Use of Levosimendan in Patients Undergoing Cardiac Surgery. *Ann Thorac Surg.* 2018;105(5):1403-1410. doi:10.1016/j.athoracsur.2017.11.070.
11. KDIGO Clinical Practice Guideline for Acute Kidney Injury. *Kidney Int Suppl.* 2012;2(1):1-138.
12. Ahmadaliyev ShSh. Posleoperatsionnyi delirii u detei posle kardiokhirurgicheskikh operatsii: chastota, faktory riska i klinicheskie posledstviya [Postoperative delirium in children after cardiac surgery: frequency, risk factors, and clinical outcomes]. In: Put' v nauku: materialy XIII nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem; 2024 Dec 6; Moscow, Russia. Moscow: OOO "Prakticheskaya meditsina"; 2024. p. 110. EDN TCQSLR. [In Russian].
13. Ahmadaliyev ShSh, Ahmadaliyeva MA, Sidikov AA. Vozmozhnye aritmicheskie izmeneniya posle kardiokhirurgicheskikh vmeshatel'stv: chastota, faktory riska i klinicheskie posledstviya [Possible arrhythmic changes after cardiac surgery: frequency, risk factors, and clinical outcomes]. In: Young people and science: results and perspectives: Sbornik materialov Vserossiiskoi nauchno-prakticheskoi konferentsii studentov i molodykh uchenykh s mezhdunarodnym uchastiem; 2024 Nov 25-27; Saratov, Russia. Saratov: Saratovskii

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

gosudarstvennyi meditsinskii universitet im. V.I. Razumovskogo; 2024. p. 151-152. EDN PJVNVX. [In Russian].

14. Abdullaev NU, Ahmadaliyev ShSh, Koraboeva FU, Urmanov FM. Otsenka issledovanii katekholeminov v moche u bol'nykh ishemicheskoi bolezniyu serdtsa, oslozhnennoi serdechnoi nedostatochnost'yu [Urinary catecholamines in ischemic heart disease complicated by heart failure: an assessment]. In: Molodezh' i meditsinskaya nauka v XXI veke: sbornik trudov XVI-oi Vserossiiskoi nauchnoi konferentsii studentov i molodykh uchenykh s mezhdunarodnym uchastiem; 2015 Apr 15-17; Kirov, Russia. Kirov: Kirovskaya gosudarstvennaya meditsinskaya akademiya; 2015. p. 105. EDN DKXOLM. [In Russian].

15. Muhammadziyoyev H, Axmadaliyev S. Restoration of hemodynamics after heart surgeries. Journal of Applied Science and Social Science. 2025;1(1):462-464. Available from: <https://inlibrary.uz/index.php/jasss/article/view/71934>.