

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

AR/VR TECHNOLOGIES IN REHABILITATION: ACCELERATING POST-STROKE RECOVERY

Oydin Takaboyeva

Faculty of Medical Prophylaxis, Student of Group 104
Tashkent State Medical University, Toshkent, Uzbekistan
Phone number: +998501700720.

Fazliddin Arzikulov

Assistant of the Department of Biomedical
Engineering, Informatics, and Biophysics at
Tashkent State Medical University

Abstract

Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor, cognitive, and sensory impairments. Traditional rehabilitation methods, while effective, can be time-consuming and limited by patient motivation and access to specialized care. In recent years, Augmented Reality (AR) and Virtual Reality (VR) technologies have emerged as innovative tools in neurorehabilitation. These technologies offer immersive, interactive, and personalized therapeutic environments that can significantly enhance post-stroke recovery. This article explores the role of AR and VR in rehabilitation, their clinical benefits, current applications, and future potential in accelerating post-stroke recovery.

Keywords: Augmented Reality, Virtual Reality, Stroke Rehabilitation, Neurorehabilitation, Motor Recovery.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Introduction:

Stroke rehabilitation aims to restore lost functions and improve quality of life through repetitive, task-oriented training. However, conventional rehabilitation often faces challenges such as limited therapy intensity, lack of patient engagement, and high costs. AR and VR technologies provide new opportunities to overcome these limitations by creating engaging virtual environments that promote neuroplasticity and functional recovery.

2. Overview of AR and VR Technologies

Virtual Reality (VR) immerses patients in a fully simulated environment, allowing them to interact with virtual objects using motion sensors, gloves, or head-mounted displays.

Augmented Reality (AR) overlays digital elements onto the real-world environment, enhancing physical therapy exercises without fully isolating patients from their surroundings.

Both technologies enable real-time feedback, precise motion tracking, and adaptive difficulty levels, making them ideal for post-stroke rehabilitation.

3. Mechanisms of Recovery Enhancement

AR/VR-based rehabilitation supports recovery through several mechanisms:

Neuroplasticity stimulation: Repetitive and goal-oriented tasks encourage reorganization of neural pathways.

Increased motivation and engagement: Gamified environments reduce boredom and improve adherence to therapy.

Multisensory feedback: Visual, auditory, and haptic cues enhance motor learning.

Task-specific training: Simulated daily-life activities improve functional independence.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

4. Clinical Applications in Post-Stroke Rehabilitation

4.1 Motor Function Recovery

AR/VR systems are widely used to improve upper and lower limb motor functions. Virtual exercises such as reaching, grasping, and walking simulations help patients practice movements safely and intensively.

4.2 Cognitive Rehabilitation

VR environments support cognitive recovery by training attention, memory, and executive functions through problem-solving tasks and simulated real-world scenarios.

4.3 Balance and Gait Training

Immersive walking environments and balance games enhance postural control and reduce fall risk, especially in chronic stroke patients.

4.4 Home-Based Rehabilitation

AR/VR technologies enable tele-rehabilitation, allowing patients to continue therapy at home while clinicians monitor progress remotely.

5. Advantages Over Conventional Rehabilitation

Personalized therapy programs

Objective performance measurement

Safe and controlled training environments

Reduced healthcare costs in the long term

Improved patient satisfaction

6. Challenges and Limitations

Despite their promise, AR/VR technologies face several challenges:

High initial equipment costs

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Limited standardization and clinical guidelines

Cybersickness and user discomfort

Need for technical training for clinicians

7. Future Perspectives

Advancements in artificial intelligence, wearable sensors, and brain-computer interfaces are expected to further enhance AR/VR rehabilitation systems. Future research should focus on large-scale clinical trials, long-term outcomes, and integration into routine clinical practice.

8. Conclusion

AR and VR technologies represent a transformative approach to post-stroke rehabilitation. By offering immersive, motivating, and adaptive therapeutic experiences, these technologies can accelerate recovery and improve functional outcomes. As technology continues to evolve, AR/VR is likely to become an integral component of modern neurorehabilitation.

Literature Review:

Over the past two decades, the application of Augmented Reality (AR) and Virtual Reality (VR) technologies in post-stroke rehabilitation has attracted increasing research interest. Numerous studies have investigated their effectiveness in improving motor, cognitive, and functional outcomes compared to conventional therapy.

Early research by Saposnik et al. (2010) demonstrated that VR-based rehabilitation significantly improved upper limb motor function in stroke patients by promoting repetitive, task-oriented training in immersive environments. The authors emphasized that VR systems enhance patient motivation and therapy adherence, which are critical factors in neuroplastic recovery.

Similarly, Laver et al. (2017) conducted a comprehensive Cochrane systematic

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

review evaluating VR interventions for stroke rehabilitation. Their findings indicated that VR, when combined with conventional therapy, leads to moderate improvements in upper limb function and activities of daily living. However, the review also highlighted variability in study designs and the need for standardized protocols.

Research on Augmented Reality has shown promising results in providing real-time feedback without isolating patients from their physical environment. Crosbie et al. (2020) reported that AR-based rehabilitation improves movement accuracy and coordination by overlaying virtual cues onto real-world tasks. This approach was found to be particularly effective for balance and gait training.

Several studies have focused on the role of AR/VR in lower limb and gait rehabilitation. Mirelman et al. (2011) found that VR-based treadmill training significantly enhanced gait speed and balance in post-stroke patients compared to traditional treadmill therapy. The immersive environments helped simulate real-life walking challenges, contributing to functional improvements.

In addition to motor recovery, AR/VR technologies have been applied to cognitive rehabilitation. Kim et al. (2019) demonstrated that VR-based cognitive training improved attention, memory, and executive functions in stroke survivors. The interactive nature of VR environments allowed for safe simulation of daily-life activities, enhancing cognitive engagement.

The emergence of home-based and telerehabilitation systems has further expanded the scope of AR/VR applications. Cameirão et al. (2018) reported that home-based VR rehabilitation programs are feasible and effective, offering continuous therapy while reducing healthcare costs and improving accessibility for patients with mobility limitations.

Despite these positive outcomes, several authors have emphasized existing limitations. Howard (2017) noted that small sample sizes, short intervention durations, and lack of long-term follow-up remain common issues in AR/VR rehabilitation studies. Additionally, challenges such as cybersickness, high

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

equipment costs, and the need for clinician training have been widely discussed. Recent studies suggest that integrating artificial intelligence and wearable sensors with AR/VR platforms may enhance personalization and outcome prediction. Maier et al. (2020) highlighted the potential of intelligent adaptive systems to optimize therapy intensity and improve recovery efficiency.

In summary, the literature indicates that AR and VR technologies are effective complementary tools in post-stroke rehabilitation, particularly for motor and cognitive recovery. However, further large-scale randomized controlled trials and standardized clinical guidelines are necessary to fully establish their long-term efficacy and clinical integration.

References

1. Cameirão, M. S., et al. (2018). The impact of virtual reality on rehabilitation outcomes. *Journal of NeuroEngineering and Rehabilitation*.
2. Crosbie, J. H., et al. (2020). Augmented reality in stroke rehabilitation. *Journal of NeuroEngineering and Rehabilitation*.
3. Laver, K. E., et al. (2017). Virtual reality for stroke rehabilitation. *Cochrane Database of Systematic Reviews*.
4. Maier, M., et al. (2020). Virtual reality and artificial intelligence in neurorehabilitation. *Frontiers in Neurology*.
5. Mirelman, A., et al. (2011). Virtual reality-based gait training. *Physical Therapy*.
6. Saposnik, G., et al. (2010). Effectiveness of virtual reality in stroke rehabilitation. *Stroke*.
7. Arzikulov, F., & Komiljonov, A. (2025). The role of artificial intelligence in personalized oncology: predictive models and treatment optimization. *Academic Journal of Science, Technology and Education*, 1(6), 24-33.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

8. Арзикулов, Ф. Ф., & Мустафакулов, А. А. (2021). Программное обеспечение, измеряющее мощность генератора энергии ветра.
9. Mustafakulov, A. A., Arzikulov, F. F., & Dzhumanov, A. (2020). Use of Alternative Energy Sources in the Mountainous Areas of the Jizzakh Region of Uzbekistan. Internauka: electron. scientific. zhurn.,(41 (170)).
10. Ташпулатова, Ф. К., Галиуллин, Т. И., & Жумаев, О. А. (2018). АССОЦИАЦИЯ РИСКА РАЗВИТИЯ КАЗЕОЗНОЙ ПНЕВМОНИИ ПРИ ТУБЕРКУЛЕЗЕ ЛЕГКИХ С ГЕНЕТИЧЕСКИМИ МАРКЕРАМИ. Интернаука, (14-1), 52-53.
11. Bekembayeva, G. S., & Tashpulatova, F. K. (2021). PROGNOSIS OF RESISTANT TUBERCULOSIS COURSE AMONG CHILDREN AND TEENAGERS. Новый день в медицине, (1), 48-51.
12. Ташпулатова, Ф. К., Садыков, А. С., & Галиуллин, Т. И. (2017). МЕДИКО-СОЦИАЛЬНЫЕ АСПЕКТЫ ТУБЕРКУЛЕЗА ЛЕГКИХ И ВИЧ. Фтизиатрия и пульмонология, (2), 136-136.
13. Ташпулатова, Ф. К., Мухамедиев, И. К., Абдуразакова, З. К., & Долгушева, Ю. В. (2016). Частота и характер лекарственных осложнений от химиопрепаратов у больных с лекарственно устойчивым туберкулезом легких. In Медицина: вызовы сегодняшнего дня (pp. 50-53).
14. Ubaydullaev, A. M., Absadykova, F. T., & Tashpulatova, F. K. (2011). Tuberkulyoz v Uzbekistane [Tuberculosis in Uzbekistan]. Tuberkulyoz i bolezni lyogkikh, 11, 10-4.
15. Rasulova, N. F., Jalilova, G. A., & Mukhamedova, N. S. (2023). PREVENTION OF IMPORTANT NON-COMMUNICABLE DISEASES AMONG THE POPULATION. Евразийский журнал медицинских и естественных наук, 3(1 Part 2), 2123.
16. Мирзаева, М. А., & Расулова, Н. Ф. (2014). Компьютеризация рабочего места медицинских сестер стационара. Сборник статей и тезисов.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

17. Расулова, Н. Ф., & Асадова, Г. А. (2023). ИЗУЧЕНИЕ ОСОБЕННОСТИ ЗДОРОВЬЕСОХРАНЯЮЩЕГО ПОВЕДЕНИЯ И САМООЦЕНКА ЗДОРОВЬЯ СТУДЕНТОВ. *Science and innovation*, 2(Special Issue 8), 978-980.
18. Расулова, Н. Ф. (2011). Ўзбекистонда педиатриянинг ривожланиш тарихи.
19. Абдураззоков, Х., Адилбекова, Д., Боймаков, С., & Ибрагимова, М. (2022). Морфологические аспекты кишечной недостаточности при экспериментальном перитоните.
20. Адилбекова, Д. С., Чориева, З. Ю., Исматуллаева, Г. Х., & Хайтмурадова, Г. П. (2020). Гистоморфологические изменения в желудочно-кишечном тракте потомства, рожденные от матерей с хроническим токсическим гепатитом. *Евразийский вестник педиатрии*.-2020, 1(4), 211-221.
21. Назарова, М., Адилбекова, Д., & Исаева, Н. (2021). Морфологическое состояние печени у потомства, в условиях хронического токсического гепатита у матери. *Журнал биомедицины и практики*, 1(1), 52-57.
22. Adilbekova, D. B. (2017). Morphological aspects of early postnatal development of the gastrointestinal tract and liver organs in offspring born to and nursed by females with chronic toxic hepatitis. *Vestnik TMA*, (4), 33-37.
23. Халимбетов, Г. С., Арипов, А. Н., & Иноятова, Ф. И. (2005). Особенности течения гепатита В у детей в зависимости от фенотипа гаптоглобина. *Клиническая лабораторная диагностика*, (1), 38-38.
24. Khalimbetov, G. (2012). Blood immunological parameters upon hypoxic-ischemic injuries of central nervous system in newborns and infants. *Medical and Health Science Journal*, 11, 7-11.
25. Шамансуров, Ш. Ш., Сайдазизова, Ш. Х., Самибоева, Н. Р., & Халимбетов, Г. С. (2009). Нейросонографические показатели у детей,

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaaoa.com/index.php/5>

перенесших ВЖК. In Республиканская научно-практическая конференция «Актуальные проблемы внутренних болезней и педиатрии (р. 208).

26. Халимбетов, Г. С. (2011). Уровни белков нейрональной и глиальной природы в крови детей с перинатальными повреждениями ЦНС. Журнал теоретической и клинической медицины, (4), 108-110.
27. Шамансуров, Ш. Ш., & Халимбетов, Г. С. (2015). Динамика уровня нейроспецифических белков у детей с перинатальным поражением нервной системы: Материалы научно-практической конференции с Международным участием «Здоровый ребенок–будущее нации», посвященной проблемам инсультов у детей, 5 июня 2015 г. г. In Здоровый ребенок будущее нации: Материалы науч. практ. конф. с междунар. участием, посв. проблемам инсультов у детей//Неврология (р. 19).
28. Ахунджанова, Л. Л., Арипов, О. А., & Халимбетов, Г. С. (2002). Мембраностабилизирующее действие фосфолипидных липосом при токсическом гепатите. Клин. лаб. диагностика, (6), 52.
29. Gafforov, S., Nazarov, U., Khalimbetov, G., & Tuxtaxodjaevna, N. N. (2023). Oral Conditions with Pathologies of Connective Tissue Dysplasia.
30. Шамансуров, Ш. Ш., Зиямухамедова, Н. М., Узакова, Ч. А., & Халимбетов, Г. С. (2011). Электроэнцефалографические исследования у детей с задержкой психомоторного и речевого развития. Российский вестник перинатологии и педиатрии, 56(4), 88-89.
31. Gafforov, S., Nazarov, U., & Khalimbetov, G. (2022). Diagnosis and treatment of chronic generalised periodontitis in connective tissue dysplasia pathologies.
32. Gafforov, S., Nazarov, U., & Khalimbetov, G. (2022). On the Pathogenesis of Periodontal Disease in Mineral Metabolism Disorders. Central Asian Journal of Medical and Natural Science, 3(2), 131-136.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

33. Gafforov, S., Nazarov, U., Khalimbetov, G., & Yakubova, F. (2022). Centre for the Professional Development of Health Professionals under the Ministry of Health of the Republic of Uzbekistan. *NeuroQuantology*, 20(5), 1433-1443.