

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

AI-ASSISTED DETECTION AND CLASSIFICATION OF BRAIN TUMORS IN MRI

Ulbo 'lsin Boltaboyeva

Student of Tashkent State Medical University,
Tashkent, Uzbekistan

Ulugbek Isroilov

Assistant of the Department of Biomedical Engineering, Informatics, and Biophysics at
Tashkent State Medical University

Abstract

Brain tumors are a leading cause of morbidity and mortality worldwide, and early, accurate diagnosis is crucial for effective treatment and improved patient outcomes. Magnetic resonance imaging (MRI) is the standard imaging modality for brain tumor detection, providing high-resolution visualization of brain structures and pathological changes. However, manual interpretation of MRI scans is time-consuming and dependent on radiologist expertise, leading to variability in diagnosis. Artificial intelligence (AI) and deep learning approaches, particularly convolutional neural networks (CNNs), offer automated, precise, and efficient solutions for brain tumor detection and classification. This paper reviews current AI methodologies for brain tumor analysis using MRI, highlighting detection, segmentation, and classification models. Challenges such as limited annotated datasets, variability in imaging protocols, and interpretability of models are discussed. The study emphasizes the potential of AI systems to enhance diagnostic accuracy, optimize workflow, and improve patient care in neuro-oncology.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Keywords: Brain tumors, MRI, artificial intelligence, deep learning, convolutional neural networks, automated detection, tumor segmentation, classification

Introduction

Brain tumors, both primary and metastatic, represent a significant clinical challenge due to their high morbidity, mortality, and potential for neurological impairment. Early and accurate diagnosis is essential for treatment planning, prognosis, and improving patient outcomes. Magnetic resonance imaging (MRI) is the gold standard for brain tumor evaluation, offering high-resolution visualization of brain anatomy, tumor boundaries, edema, and infiltration patterns. However, manual interpretation of MRI scans is time-consuming, requires specialized expertise, and is subject to inter-observer variability, which can lead to delayed or inconsistent diagnosis.

Artificial intelligence (AI), particularly deep learning techniques, has emerged as a transformative tool for automated brain tumor detection and classification. Convolutional neural networks (CNNs) are capable of extracting hierarchical features directly from MRI data, enabling accurate identification of tumor regions and classification into subtypes such as gliomas, meningiomas, and pituitary tumors. Advanced segmentation models, including U-Net and its variants, allow precise delineation of tumor boundaries, quantification of tumor volume, and assessment of peritumoral edema, facilitating objective monitoring of tumor progression and treatment response.

Hybrid and multi-modal approaches integrate MRI data with clinical parameters, genomic information, and histopathological findings, providing context-aware predictions and personalized treatment guidance. Techniques such as transfer learning, data augmentation, and multi-center dataset integration address challenges related to limited annotated datasets, heterogeneous imaging protocols, and variability across patient populations. Model interpretability is

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

critical for clinical adoption; visualization tools such as saliency maps and class activation maps (CAMs) allow clinicians to understand AI decision-making processes, fostering trust and validation in routine practice.

This paper reviews current AI-assisted methodologies for brain tumor detection and classification in MRI, highlighting CNN-based architectures, segmentation strategies, hybrid models, clinical applicability, challenges, and future directions. The potential of AI systems to improve diagnostic accuracy, reduce interpretation time, and optimize neuro-oncological care is emphasized.

Main Body

Artificial intelligence (AI) and deep learning have significantly advanced the automated detection and classification of brain tumors using MRI. Convolutional neural networks (CNNs) are widely employed to extract hierarchical features from MRI images, enabling accurate identification of tumor regions and differentiation between tumor types, including gliomas, meningiomas, and pituitary adenomas. These models provide consistent, reproducible, and rapid analysis, reducing reliance on manual interpretation and improving diagnostic workflow efficiency.

Segmentation is a critical component of AI-based brain tumor analysis. Models such as U-Net and its variants allow precise delineation of tumor boundaries, peritumoral edema, and necrotic regions. Accurate segmentation is essential for volumetric assessment, surgical planning, radiotherapy targeting, and monitoring treatment response over time. Hybrid models that combine MRI imaging data with patient clinical information, histopathology, or genomic data further enhance prediction accuracy and support personalized treatment strategies.

To overcome challenges associated with limited annotated datasets and heterogeneous imaging protocols, techniques such as data augmentation, transfer learning, and multi-center dataset integration are widely used. These approaches improve model generalizability and robustness across different populations and

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

imaging devices. Model interpretability remains crucial for clinical adoption; visualization techniques like saliency maps, class activation maps (CAMs), and attention mechanisms enable clinicians to understand which image regions influenced model predictions, thereby fostering trust and facilitating clinical integration.

Despite these advancements, several challenges persist. Variability in MRI acquisition protocols, scanner types, and image quality can affect model performance. Ethical considerations, including patient privacy, data security, and potential algorithmic bias, must be addressed to ensure safe and equitable application of AI in clinical neuro-oncology. Continuous validation in diverse clinical environments and prospective studies are necessary to confirm reliability and effectiveness.

Overall, AI-assisted detection and classification of brain tumors in MRI offers a transformative approach to neuro-oncological diagnostics. These systems enhance accuracy, reduce interpretation time, support early intervention, and optimize treatment planning, ultimately improving patient outcomes and advancing precision medicine in brain tumor management.

Discussion

The application of artificial intelligence (AI) in brain tumor detection and classification has significantly enhanced the diagnostic process in neuro-oncology. Deep learning models, particularly CNNs, provide automated, accurate, and reproducible analysis of MRI scans, facilitating identification of tumor regions and differentiation among tumor subtypes. Segmentation models, such as U-Net, enable precise delineation of tumor boundaries, necrotic areas, and peritumoral edema, which are critical for surgical planning, radiotherapy, and monitoring treatment response.

Hybrid approaches that integrate imaging data with patient clinical parameters, histopathological findings, and genomic information further enhance diagnostic

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

accuracy and support personalized treatment strategies. Multi-center dataset integration, data augmentation, and transfer learning are employed to address challenges related to limited annotated datasets, heterogeneous imaging protocols, and variability in patient populations. Visualization techniques, including saliency maps and class activation maps (CAMs), improve interpretability and clinician trust, facilitating integration into clinical workflows. Despite these advancements, challenges remain. Variability in MRI acquisition protocols, image quality, and scanner types can affect model performance. Ethical considerations, including patient privacy, data security, and algorithmic fairness, are critical for safe deployment. Continuous validation in diverse clinical settings, along with prospective studies, is necessary to ensure reliability, generalizability, and clinical utility.

Overall, AI-assisted systems for brain tumor detection and classification can improve diagnostic efficiency, reduce interpretation time, and support timely clinical decision-making, ultimately enhancing patient outcomes and advancing precision neuro-oncology.

Conclusion

In conclusion, artificial intelligence and deep learning offer powerful tools for automated detection and classification of brain tumors using MRI. CNN-based architectures and advanced segmentation models enable accurate identification of tumor regions, differentiation of tumor types, and volumetric assessment, improving diagnostic precision and supporting clinical decision-making.

Challenges, such as variability in imaging protocols, limited annotated datasets, and the need for model interpretability, persist. However, hybrid and multi-modal approaches, data augmentation, transfer learning, and visualization techniques continue to strengthen AI applications in neuro-oncology. The integration of AI-assisted brain tumor detection systems into clinical workflows can enhance diagnostic accuracy, optimize treatment planning, support early intervention, and

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

ultimately improve patient outcomes, demonstrating the transformative impact of AI in modern neuroimaging.

References

1. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: State of the art and future directions. *Journal of Digital Imaging*, 30(4), 449–459. <https://doi.org/10.1007/s10278-017-9983-4>
2. Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. *IEEE Transactions on Medical Imaging*, 35(5), 1240–1251. <https://doi.org/10.1109/TMI.2016.2538465>
3. Zhang, Z., & Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. *Neural Networks*, 106, 219–231. <https://doi.org/10.1016/j.neunet.2018.03.002>
4. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & Maier-Hein, K. H. (2019). No new-net. *Brain Tumor Segmentation and Radiomics Challenge, MICCAI*, 234–244. https://doi.org/10.1007/978-3-030-11726-9_23
5. Bakas, S., Reyes, M., Jakab, A., et al. (2018). Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. *arXiv preprint arXiv:1811.02629*. <https://arxiv.org/abs/1811.02629>
6. Li, Z., Wang, Y., Yu, F., Gu, S., & Cao, G. (2020). Multi-scale convolutional neural network for brain tumor segmentation in MRI images. *Biomedical Signal Processing and Control*, 59, 101905. <https://doi.org/10.1016/j.bspc.2020.101905>
7. Begali o'g, I. U. B., & Rustamovna, I. G. (2025). Dermatologiyada AI dasturlari orqali teri kasalliklarini aniqlash. *Multidisciplinary Journal of Science and Technology*, 5(5), 703-709.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

8. Begali o‘g, I. U. B., Malikovich, E. S., & Xoziakbar o‘g‘li, U. X. (2025). 3D PRINTER ORQALI ISHLAB CHIQARILGAN PROTEZ VA IMPLANTLARNING TIBBIYOTDA QO’LLANILISHI. Multidisciplinary Journal of Science and Technology, 5(5), 857-862.
9. Isroilov, U. B. (2023). Automatic Determination of Blood Glucose Level by Means of A Non-invasive Glucometer. American Journal of Technology and Applied Sciences, 12, 78-84.
10. Begali o‘g, I. U. B., Malikovich, E. S., & Ahrorxonov, A. (2025). Tibbiyotda robototexnika: Jarrohlik sohasida qo ‘llanishi. Multidisciplinary Journal of Science and Technology, 5(5), 878-884.
11. Begali o‘g, I. U. B., Malikovich, E. S., & Olimov, A. (2025). Bolalar tibbiyotida VR o‘yinlari. Multidisciplinary Journal of Science and Technology, 5(5), 714-721.
12. Begali o‘g, I. U. B., & Shuhratovna, S. D. (2025). Diabetiklar uchun mobil ilovalar va ularning samaradorligi. Multidisciplinary Journal of Science and Technology, 5(5), 710-713.
13. Begali o‘g, I. U. B., & Mukarram, A. (2025). Kasalliklarning geografik tarqalishi xaritalari (GIS texnologiyalari). Multidisciplinary Journal of Science and Technology, 5(5), 644-648.
14. Begali o‘g, I. U. B., & Shodmonovna, X. A. (2025). COVID-19 DAVRIDA TELEMEDITSINANING ORNI. Multidisciplinary Journal of Science and Technology, 5(5), 698-702.
15. Begali o‘g, I. U. B., & Mohinur, M. (2025). Da Vinci roboti va jarrohlik amaliyotlari. Multidisciplinary Journal of Science and Technology, 5(5), 649-653.
16. Begali o‘g, I. U. B. (2025). Shaxsiylashtirilgan tibbiyot (Personalized medicine). Multidisciplinary Journal of Science and Technology, 5(5), 682-688.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

17. Begali o‘g, I. U. B., & Bahromov, H. (2025). Nanorobotlar orqali qon tomirlarini tozalash. Multidisciplinary Journal of Science and Technology, 5(5), 657-662.
18. Menze, B. H., Jakab, A., Bauer, S., et al. (2015). The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993–2024. <https://doi.org/10.1109/TMI.2014.2377694>