

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

INVESTIGATING THE POTENTIAL GENETIC ASSOCIATION OF SALIVARY AND TONGUE MICROBIOTA WITH PERIODONTITIS: A MENDELIAN RANDOMIZATION STUDY

Djalilova Fariza Rasuljanovna,
Jamshid Qobilovich Abdulakhatov
Safira Abdisalomovna Karimova.

Organization: Tashkent State Medical University

Department: Propaedeutics of Orthopedic Dentistry

E-mail: farizadzalilova7@gmail.com

Abstract

Chronic periodontitis (CP) is characterized by subgingival microbial dysbiosis and demonstrates distinct microbial profiles; however, clear causal relationships with microbiomes from separate oral regions remain poorly defined. Genome-wide association study (GWAS) data for CP and oral microbial communities were obtained from a large European cohort and the China National GeneBank DataBase (CNGBdb), respectively. Using single-nucleotide polymorphisms (SNPs) as genetic instruments, Mendelian randomization (MR) analyses were performed via the inverse-variance weighted (IVW) method. Analytical procedures were executed using the 'TwoSampleMR' package (version 0.6.4) in R. Sensitivity analyses were conducted to confirm result robustness and limit horizontal pleiotropy.

The MR analysis identified three salivary bacterial taxa associated with reduced CP risk: *Neisseria meningitidis* (OR = 0.67, 95% CI: 0.49–0.98), *Streptococcus vestibularis* (OR = 0.74, 95% CI: 0.56–0.98), and *Lancefieldella unclassified* (OR = 0.68, 95% CI: 0.52–0.91) ($p < 0.05$). In contrast, three tongue microbial

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

taxa were linked to increased CP risk: *Solobacterium unclassified* (OR = 1.45, 95% CI: 1.04–2.04), *Fusobacterium sp000235465* (OR = 1.40, 95% CI: 1.02–1.94), and *Haemophilus parainfluenzae* (OR = 1.56, 95% CI: 1.12–2.18) ($p < 0.05$). No significant heterogeneity or directional pleiotropy was detected.

This study underscores associations between specific salivary and tongue microbial taxa and CP, providing mechanistic insight into their potential roles. Certain microbial taxa may serve as biomarkers for risk-stratified prevention and as targets for precision prebiotic or therapeutic interventions.

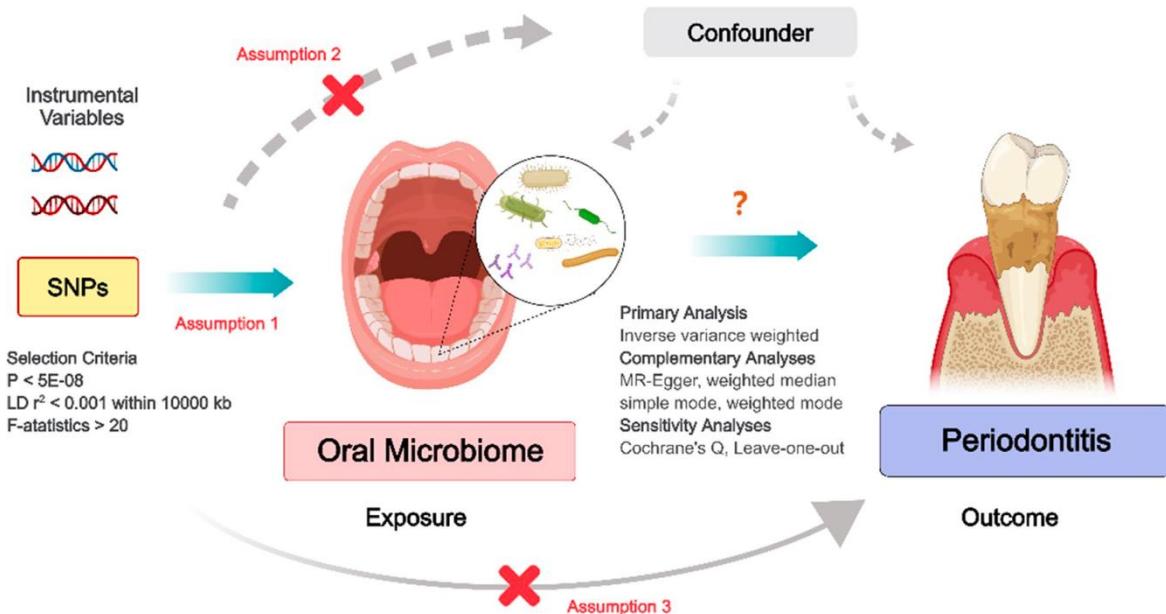
Keywords: Mendelian randomization, Oral microbiome, Periodontitis, Tongue microbiota.

1. Introduction

Chronic periodontitis (CP) is a widespread chronic inflammatory condition with non-communicable disease attributes. In 2019, severe periodontitis affected approximately 1.1 billion individuals globally, accounting for 10.6% of the population; age-standardized prevalence increased by 8.4% from 1990 to 2019 (Wu et al., 2022). Clinical hallmarks include microbial dysbiosis, periodontal pocket formation, connective tissue degradation, and alveolar bone loss, ultimately threatening tooth retention and quality of life (Kwon et al., 2021; Agnese et al., 2024). Established risk factors include smoking, alcohol use, and inadequate oral hygiene, yet underlying etiological mechanisms remain incompletely understood (Lasica et al., 2024).

The oral cavity hosts a complex microbial ecosystem, second in diversity only to the gut, and is intimately linked to oral and systemic diseases (Gopinath et al., 2020). Dysbiosis of oral microbial communities is recognized as a key driver in CP pathogenesis (Deng et al., 2017). Although microbial composition varies across oral niches (e.g., supragingival, subgingival), lifestyle, systemic health,

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)


ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

and hygiene practices further influence these communities (Li et al., 2022; Gopinath et al., 2022; Guo et al., 2024). Studying these relationships is challenging due to confounding and reverse causation.

Mendelian randomization (MR) uses genetic variants as instrumental variables to infer causality between exposures and outcomes, minimizing confounding and reverse causality (Davey Smith & Ebrahim, 2003). Prior research indicates host genetics shape oral microbiome composition (Goodrich et al., 2017; Dennmitt et al., 2017), and GWAS have identified genetic regulators of oral microbial structure (Awany et al., 2019; Liu et al., 2024). However, causal links between non-subgingival oral microbiota and CP are underexplored.

This study employed bidirectional two-sample MR to examine causal relationships between salivary/tongue microbiota and CP using GWAS data. We hypothesize that host genetics influence heritable microbial taxa in saliva and tongue, which in turn affect CP susceptibility. Findings may establish a causal

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

framework for microbiome-mediated periodontitis and guide targeted interventions.

2. Methods

2.1 Study Design and Data Sources

A two-sample MR design was implemented. Oral microbiome GWAS summary data were sourced from CNGBdb (Liu et al., 2021). CP data were obtained from the FinnGen consortium (dataset “finn-b-K11_PERIODON_CHRON”), comprising 3,046 cases and 195,395 controls of European ancestry, classified using ICD-8, ICD-9, and ICD-10 criteria.

The study complied with ethical standards for secondary data analysis and followed STROBE-MR reporting guidelines.

2.2 Oral Microbiome Profiling and Bioinformatics

The analysis included 2,017 tongue and 1,915 salivary metagenomes (total N = 3,984). Quality control included genotype missingness < 2%, sequencing coverage > 20×, HWE > 10⁻⁵, and exclusion of population outliers and related individuals. Taxonomic assignment and data normalization were performed for cross-cohort comparability.

2.3 Instrumental Variable Selection

SNPs associated with microbial taxa ($p < 5 \times 10^{-8}$) were selected as instruments. Linkage disequilibrium clumping ($r^2 < 0.001$, window = 10,000 kb) and MR-PRESSO outlier removal were applied. Three core IV assumptions were verified:

1. **Relevance:** Strong SNP–exposure association.
2. **Independence:** No SNP–confounder association.
3. **Exclusion restriction:** SNP–outcome effect mediated only via exposure.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

2.4 Mendelian Randomization Analyses

Primary analysis used IVW meta-analysis. Sensitivity analyses included MR-Egger, weighted median, contamination mixture, and mode-based methods to assess robustness and pleiotropy.

2.5 Heterogeneity and Pleiotropy Assessments

Cochran's Q statistic evaluated heterogeneity. MR-Egger intercept and MR-PRESSO tested directional pleiotropy. Steiger filtering confirmed causal directionality.

2.6 Statistical Analysis

Analyses were conducted in R v4.3.1 using 'TwoSampleMR' and 'MRPRESSO'. Multiple testing correction applied Benjamini–Hochberg FDR ($q < 0.05$). Results were visualized with forest plots, volcano plots, and circular heatmaps.

3. Results

MR analysis identified taxon-specific causal associations across multiple phylogenetic levels. A total of 28,715 SNPs met instrument strength criteria (F-statistic > 20). Reverse MR yielded no significant results, supporting unidirectional causality from microbiome to CP.

3.1 Associations Between Saliva Microbiota and CP

Three salivary taxa were inversely associated with CP risk:

- *Neisseria meningitidis* (OR = 0.67, 95% CI: 0.49–0.98, $p=0.037$)
- *Streptococcus vestibularis* (OR = 0.74, 95% CI: 0.56–0.98, $p=0.034$)
- *Lancefieldella unclassified* (OR = 0.68, 95% CI: 0.52–0.91, $p=0.008$)

3.2 Associations Between Tongue Microbiota and CP

Three tongue taxa were positively associated with CP risk:

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

- Solobacterium unclassified (OR = 1.45, 95% CI: 1.04–2.04, p=0.031p=0.031)
- Fusobacterium sp000235465 (OR = 1.40, 95% CI: 1.02–1.94, p=0.040p=0.040)
- Haemophilus parainfluenzae (OR = 1.56, 95% CI: 1.12–2.18, p=0.009p=0.009)

3.3 Heterogeneity and Pleiotropy Analysis

Cochran's Q tests indicated no significant heterogeneity. MR-Egger intercepts were non-significant, suggesting absence of directional pleiotropy.

4. Discussion

This MR study provides evidence for causal roles of specific salivary and tongue microbiota in CP. Salivary taxa (*Neisseria meningitidis*, *Streptococcus vestibularis*, *Lancefieldella*) exhibited protective effects, while tongue taxa (*Solobacterium*, *Fusobacterium*, *Haemophilus parainfluenzae*) were associated with increased risk.

Saliva's functions in cleansing, digestion, and immune modulation may explain protective microbial roles. Conversely, the tongue's papillary structure shelters biofilm-embedded pathogens that may interact with subgingival plaque to promote dysbiosis.

Mechanistically, *Neisseria meningitidis* may modulate immune responses; *Streptococcus vestibularis* may support homeostasis via metabolic activities; *Lancefieldella* likely plays context-dependent roles. Tongue-associated *Solobacterium* produces volatile sulfur compounds linked to tissue toxicity; *Fusobacterium* and *Haemophilus parainfluenzae* are recognized pro-inflammatory agents.

The use of MR overcomes limitations of observational studies, though several constraints remain: heterogeneity in CP definitions across datasets, ancestry-

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

specific genetic effects, potential unmeasured confounding, and limited SNP counts for some taxa. Future experimental studies are needed to validate mechanisms.

Clinically, these findings suggest potential for microbiome-targeted diagnostics, risk stratification, and precision interventions such as probiotics or antimicrobials prior to disease manifestation.

5. Conclusion

This study offers novel MR-based evidence for causal relationships between salivary/tongue microbiota and CP. Specific microbes may exert protective or pathogenic influences, informing future strategies for microbiome modulation in periodontal disease prevention and treatment.

References

1. Wu L, Zhang S, Zhao L et al (2022) Global, regional, and national burden of periodontitis from 1990 to 2019: results from the global burden of disease study 2019. *J Periodontol* 93:1445–1454.
2. Kwon T, Lamster IB, Levin L (2021) Current concepts in the management of periodontitis. *Int Dent J* 71:462–476.
3. Agnese CCD, Schöffer C, Kantorski KZ et al (2024) Periodontitis and oral health-related quality of life: a systematic review and meta-analysis. *J Clin Periodontol*.
4. Lasica A, Golec P, Laskus A et al (2024) Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. *Front Microbiol* 15:1469414.
5. Gopinath D, Kunnath Menon R, K. Veettil S et al (2020) Periodontal diseases as putative risk factors for head and neck cancer: systematic review and meta-analysis. *Cancers* 12:1893.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

6. Deng Z-L, Szafranski SP, Jarek M et al (2017) Dysbiosis in chronic periodontitis: key microbial players and interactions with the human host. *Sci Rep* 7:3703.
7. Li X, Liu Y, Yang X et al (2022) The oral microbiota: community composition, influencing factors, pathogenesis, and interventions. *Front Microbiol* 13:895537.
8. Gopinath D, Wie CC, Banerjee M et al (2022) Compositional profile of mucosal bacteriome of smokers and smokeless tobacco users. *Clin Oral Invest* 26:1647–1656.
9. Guo L, Zhou J, Xie F et al (2024) The profile of oral microbiome in Chinese elderly population associated with aging and systemic health status. *BMC Oral Health* 24:895.
10. Davey Smith G, Ebrahim S (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? *Int J Epidemiol* 32:1–22.
11. Liu B, Ye D, Yang H et al (2022) Two-sample mendelian randomization analysis investigates causal associations between gut microbial genera and inflammatory bowel disease, and specificity causal associations in ulcerative colitis or Crohn's disease. *Front Immunol* 13:921546.
12. Goodrich JK, Davenport ER, Clark AG, Ley RE (2017) The relationship between the human genome and microbiome comes into view. *Annu Rev Genet* 51:413–433.
13. Dennmitt BA, Corley RP, Huibregtse BM et al (2017) Genetic influences on the human oral microbiome. *BMC Genomics* 18:659.
14. Awany D, Allali I, Dalvie S et al (2019) Host and microbiome genome-wide association studies: current state and challenges. *Front Genet* 9:637.
15. Liu X, Tong X, Zou L et al (2024) A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. *Commun Biol* 7:139.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

16. Liu X, Tong X, Zhu J et al (2021) Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome. *Cell Discov* 7:117.
17. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. *Genet Epidemiol* 40:304–314.
18. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet* 50:693–698.
19. Andjelkovic M, Sojic LT, Lemie AM et al (2017) Does the prevalence of periodontal pathogens change in elderly edentulous patients after complete denture treatment? *J Prosthodont* 26:364–369.
20. Fernandes CB, Aquino DR, Franco GCN et al (2010) Do elderly edentulous patients with a history of periodontitis harbor periodontal pathogens? *Clin Oral Implants Res* 21:618–623.
21. Simas AM, Kramer CD, Weinberg EO, Genco CA (2021) Oral infection with a periodontal pathogen alters oral and gut microbiomes. *Anaerobe* 71:102399.
22. Chew RJI, Tan KS, Chen T, et al (2024) Quantifying periodontitis-associated oral dysbiosis in tongue and saliva microbiomes—An integrated data analysis. *J Periodontol JPER* 24-0120.
23. Belstrom D, Constancias F, Drautz-Moses DI et al (2021) Periodontitis associates with species-specific gene expression of the oral microbiota. *NPJ Biofilms Microbiomes* 7:76.
24. Marcotte H, Lavoie MC (1998) Oral microbial ecology and the role of salivary immunoglobulin A. *Microbiol Mol Biol Rev* 62:71–109.
25. Van der Velden U, Van Winkelhoff AJ, Abbas F, De Graaff J (1986) The habitat of periodontopathic micro-organisms. *J Clin Periodontol* 13:243–248.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 1, January 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

26. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2003) Distribution of selected bacterial species on intraoral surfaces. *J Clin Periodontol* 30:644–654.
27. Waile SV, Borud B, Laake I et al (2023) Antibodies against *Neisseria meningitidis* serogroups A, C, W and Y in serum and saliva of Norwegian adolescents. *Vaccine* 41:6529–6537.
28. Macpherson LMD, Dawes C (1991) Urea concentration in minor mucous gland secretions and the effect of salivary film velocity on urea metabolism by *Streptococcus vestibularis* in an artificial plaque. *J Periodontal Res* 26:395–401.
29. Bao K, Li X, Poveda L et al (2020) Proteome and microbiome mapping of human gingival tissue in health and disease. *Front Cell Infect Microbiol* 10:588155.
30. Veras EL, Castro dos Santos N, Souza JGS et al (2023) Newly identified pathogens in periodontitis: evidence from an association and an elimination study. *J Oral Microbiol* 15:2213111.
31. Park J, Lim Y, Park C et al (2024) Heat-killed *Lancefieldella rimae* induces bone resorption by promoting osteoclast differentiation. *J Endod* 50:1593–1601.
32. Bachtiar BM, Soeroso Y, Sunarto H et al (2022) Relationships between *Solobacterium moorei* and *Prevotella intermedia* in subgingival microbiota of periodontitis patients with halitosis: a preliminary study using qPCR. *Saudi Dent J* 34:211–219.
33. Vancauwenberghe F, Dadambi J, Laleman I et al (2013) The role of *Solobacterium moorei* in oral malodour. *J Breath Res* 7:046006.
34. Sohn J, Li L, Zhang L et al (2023) Periodontal disease is associated with increased gut colonization of pathogenic *Haemophilus parainfluenzae* in patients with Crohn's disease. *Cell Rep* 42:112120.