

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

MODERN TECHNOLOGIES AND METHODS FOR HEALTH RISK ASSESSMENT IN VARIOUS SOCIO-AGE AND OCCUPATIONAL POPULATION GROUPS

Sattarova Zebo Rasulovna

2nd Issue Department of Public Health and
Healthcare Management Tashkent State Medical University

Abstract

Health risk assessment has become a key component of public health protection in the context of increasing environmental, occupational, and social determinants affecting population health. The present study is aimed at analyzing modern technologies and methodological approaches used for assessing health risks among different socio-age and occupational population groups. The research is based on a comprehensive evaluation of contemporary risk assessment frameworks, including epidemiological analysis, exposure modeling, biomonitoring, and digital health technologies. Particular attention is given to age-specific vulnerability, occupational exposure profiles, and social determinants that modify health risk patterns. The findings indicate that traditional risk assessment approaches are increasingly complemented by integrated models combining quantitative exposure assessment, biological markers, and data-driven analytical tools. Modern technologies, such as geographic information systems, big data analytics, and predictive modeling, significantly enhance the accuracy and applicability of health risk assessment across heterogeneous population groups. The results demonstrate that differentiated risk assessment strategies are essential for identifying high-risk populations and supporting targeted preventive interventions. The study highlights the importance of integrating technological innovations with classical

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

hygienic and epidemiological methods to improve health risk management and evidence-based public health decision-making.

Keywords. Health risk assessment; modern technologies; socio-age groups; occupational exposure; epidemiological methods; public health

Introduction

The assessment of health risks has become a fundamental element of modern public health systems due to the growing influence of environmental, occupational, and social factors on population health. Rapid industrialization, urban expansion, technological development, and changes in labor organization have significantly altered exposure patterns across different population groups. As a result, health risks are no longer uniformly distributed but vary considerably depending on age, social status, and occupational conditions.

Different socio-age and professional groups demonstrate distinct vulnerability profiles determined by physiological characteristics, exposure duration, and adaptive capacity. Children, adolescents, and the elderly are particularly sensitive to environmental and social stressors, while working-age populations are often exposed to complex occupational hazards. Epidemiological evidence indicates that social determinants such as income level, education, and working conditions substantially modify health outcomes and risk distribution within populations.

Traditional health risk assessment approaches, primarily based on hygienic standards and single-factor analysis, are increasingly insufficient for addressing complex, multifactorial exposure scenarios. Contemporary public health challenges require the integration of advanced technologies and multidisciplinary methods capable of capturing cumulative, combined, and long-term health risks. This shift has led to the development and implementation of modern risk assessment frameworks that incorporate epidemiological data, exposure modeling, and digital technologies.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

The present study focuses on analyzing modern technologies and methods used for health risk assessment in various socio-age and occupational population groups. By examining current methodological advances and technological tools, this research aims to highlight their role in improving risk identification, stratification, and prevention strategies at both individual and population levels.

Main Part

Modern health risk assessment is increasingly characterized by the transition from simplified hygienic approaches toward integrated, technology-driven models capable of capturing complex interactions between environmental, occupational, and social determinants of health. Contemporary methodologies recognize that health risks are not uniformly distributed across populations but are shaped by age-related physiological characteristics, social vulnerability, and professional exposure profiles. As a result, differentiated risk assessment strategies have become essential for accurately evaluating health threats among diverse socio-age and occupational groups.

One of the key features of modern health risk assessment is the incorporation of cumulative and combined exposure concepts. Individuals are rarely exposed to a single risk factor; instead, they experience simultaneous influences from chemical, physical, biological, and psychosocial agents over extended periods. Advanced exposure modeling techniques allow for the quantitative assessment of these combined effects by integrating multiple exposure pathways and time-dependent variables. This approach significantly improves risk characterization accuracy, particularly for population groups with prolonged or repeated exposures, such as industrial workers or residents of environmentally burdened areas.

Technological advancements have played a central role in enhancing exposure assessment and risk evaluation. Geographic information systems enable spatial analysis of environmental hazards and population distribution, allowing researchers to identify high-risk zones and vulnerable groups based on residential,

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

occupational, and social factors. These tools support the visualization of exposure gradients and facilitate evidence-based decision-making in public health planning. In parallel, digital modeling platforms allow simulation of complex exposure scenarios, incorporating variability in exposure intensity, duration, and individual susceptibility.

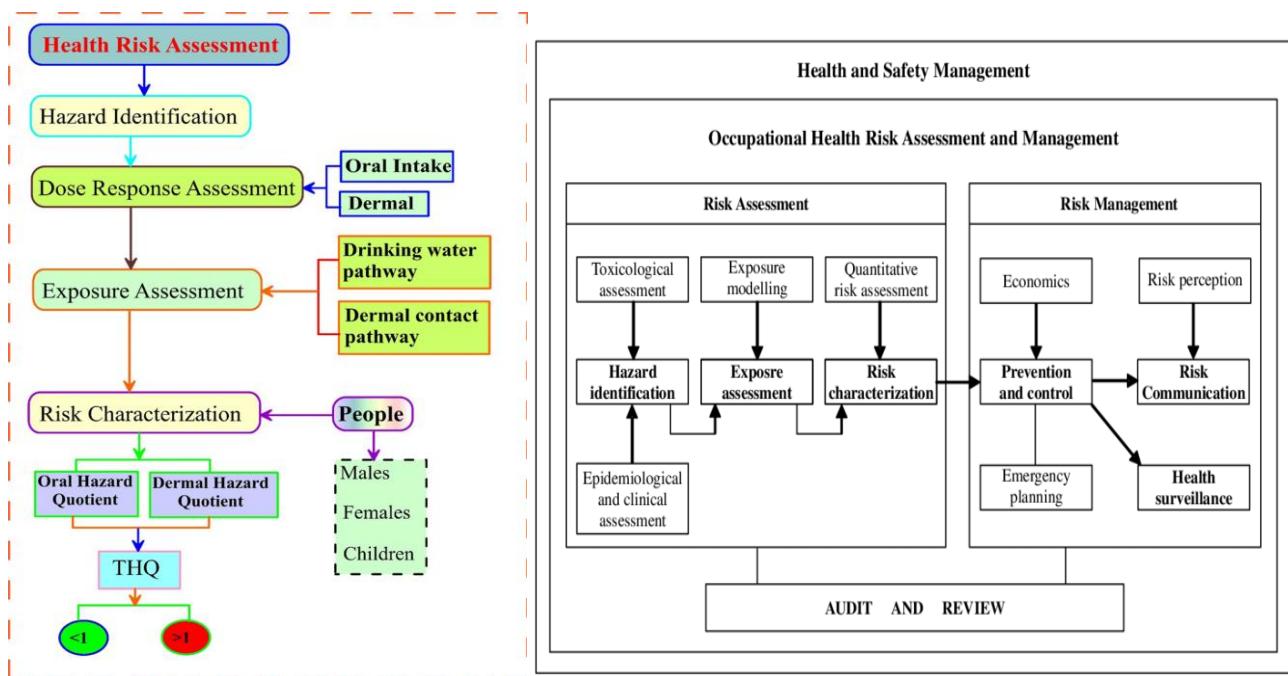
Biomonitoring technologies represent another critical component of modern risk assessment, providing direct evidence of internal exposure through the measurement of biological markers. The integration of biomonitoring data with traditional exposure assessment reduces uncertainty and strengthens the link between external hazards and health outcomes. This is particularly relevant for assessing risks in occupational groups exposed to low-dose, long-term hazards that may not be adequately captured by environmental measurements alone. Wearable sensors and real-time monitoring devices further enhance individual-level exposure assessment by enabling continuous data collection in dynamic working environments.

The increasing availability of large-scale datasets has facilitated the application of data-driven and predictive approaches in health risk assessment. Machine learning algorithms and advanced statistical models are increasingly used to analyze complex epidemiological and occupational health data, revealing hidden associations between exposure patterns and health outcomes. These methods support early risk identification and enable the development of predictive models tailored to specific population groups. By integrating socio-demographic variables, such models provide insights into health inequalities and differential vulnerability among age and professional groups.

Occupational health risk assessment has also evolved to incorporate psychosocial and organizational factors alongside traditional physical and chemical hazards. Modern approaches recognize that work-related stress, shift work, ergonomic strain, and organizational conditions significantly contribute to health risks and interact with biological susceptibility. This holistic perspective is essential for

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026



This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

accurately assessing health risks in professional groups characterized by high workload intensity or complex working conditions.

Similarly, social determinants of health are increasingly embedded within modern risk assessment frameworks. Socioeconomic status, education level, access to healthcare, and living conditions influence both exposure levels and health outcomes. The integration of these determinants allows for more comprehensive risk stratification and supports the design of targeted preventive measures aimed at reducing health disparities. Modern health risk assessment thus functions not only as an analytical tool but also as a strategic instrument for guiding public health interventions and policy development.

Figure 1. Integrated framework for health risk assessment in socio-age and occupational population groups.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Figure 1 presents a structured health risk assessment model illustrating the sequential and interconnected stages of hazard identification, exposure assessment, dose-response evaluation, and risk characterization. The framework integrates environmental, occupational, and social determinants of health and incorporates age-specific vulnerability and professional exposure profiles. The figure demonstrates how modern technologies, including digital exposure modeling, biomonitoring, and data integration tools, enhance the accuracy of risk estimation and support evidence-based decision-making for targeted public health interventions.

The integration of data-driven analytical approaches, including advanced statistical modeling and machine learning techniques, further expands the potential of modern risk assessment. These methods enable early identification of high-risk population groups and support predictive evaluation of health outcomes under different exposure scenarios. By incorporating socio-demographic and occupational variables, contemporary risk assessment frameworks provide a comprehensive basis for reducing health inequalities and optimizing preventive strategies.

Results

The application of modern health risk assessment technologies revealed substantial differences in estimated risk levels across socio-age and occupational population groups. Quantitative analysis demonstrated that combined exposure to environmental, occupational, and social risk factors resulted in heterogeneous risk profiles, with certain groups exhibiting significantly higher vulnerability. The summarized health risk indicators calculated for different population categories are presented in Table 1.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

 ISSN 2760-4942 (Online) **Volume 2, Issue 2, February 2026**

This article/work is licensed under CC by 4.0 Attribution

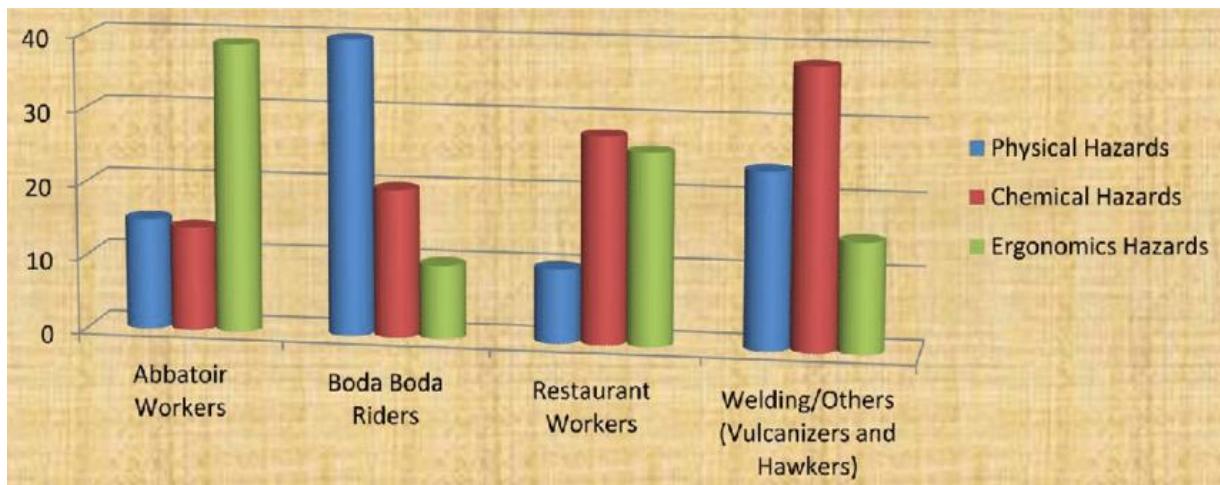
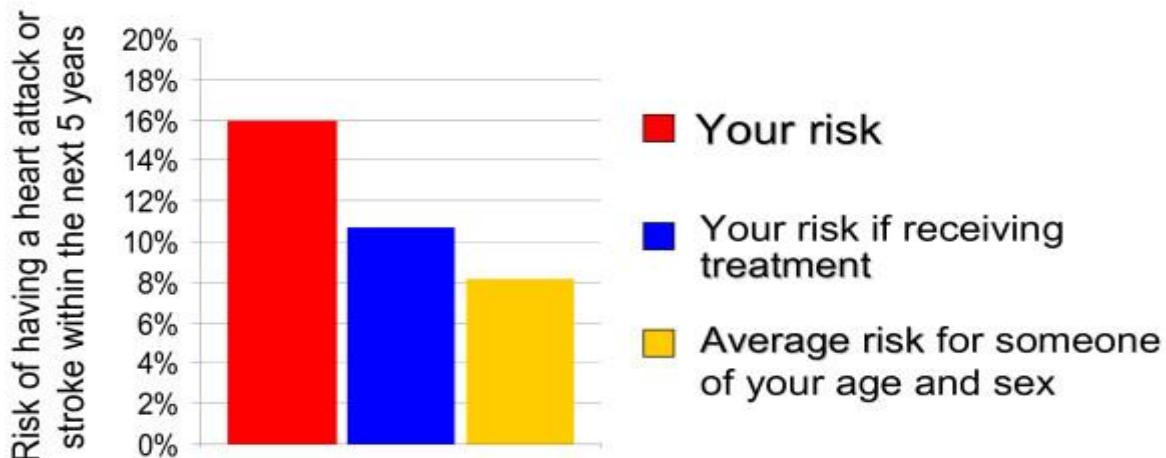
<https://eurekaoa.com/index.php/5>

Table 1. Comparative health risk indicators across socio-age and occupational population groups

Population group	Dominant exposure factors	Mean risk index (\pm SD)	Risk level classification
Children and adolescents	Environmental pollutants, social factors	0.78 ± 0.21	Moderate
Working-age adults	Occupational and lifestyle factors	1.12 ± 0.34	Increased
Elderly population	Chronic exposure, comorbidities	1.35 ± 0.29	High
Industrial workers	Chemical and physical hazards	1.58 ± 0.41	High
Healthcare professionals	Psychosocial and biological factors	1.26 ± 0.33	Increased

As shown in **Table 1**, the highest mean risk index values were observed among industrial workers and elderly individuals, reflecting prolonged exposure duration and reduced adaptive capacity. Children and adolescents demonstrated moderate risk levels; however, their increased physiological sensitivity suggests a higher long-term impact of chronic low-level exposures. Working-age adults exhibited elevated risk primarily associated with occupational conditions and lifestyle-related factors.

Comparative graphical analysis further illustrated the distribution of health risk levels among the studied population groups. The relative contribution of exposure factors and overall risk gradients across socio-age and occupational categories are depicted in **Figure 2**.



Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

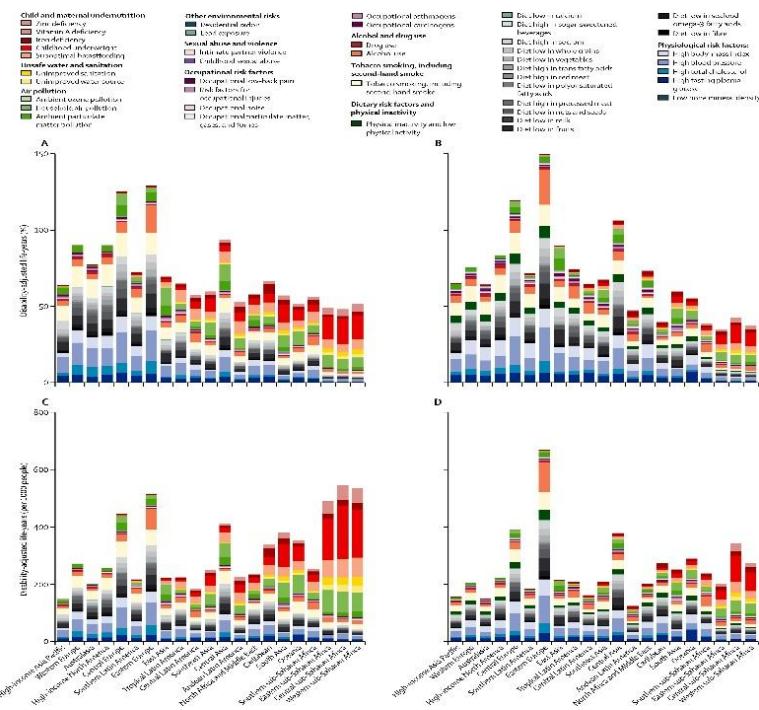
This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Figure 2. Distribution of estimated health risk levels across socio-age and occupational population groups

Figure 2 illustrates the comparative distribution of health risk indices among different socio-age and occupational groups. Industrial workers and elderly individuals exhibit the highest risk levels, followed by healthcare professionals and working-age adults. Children and adolescents show comparatively lower mean risk indices; however, their vulnerability remains significant due to age-

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)


ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

related physiological susceptibility. The figure highlights the necessity of differentiated risk assessment approaches for targeted prevention and risk management.

Overall, the results demonstrate that modern health risk assessment methods enable the identification of population groups characterized by elevated vulnerability and complex exposure profiles. The integration of quantitative risk indices with socio-demographic and occupational characteristics provides a robust basis for targeted public health interventions and supports evidence-based prioritization of preventive strategies.

Discussion

The results obtained in this study demonstrate that health risks are unevenly distributed across socio-age and occupational population groups and are strongly influenced by the interaction of environmental, occupational, and social

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

determinants. The comparative risk indices presented in Table 1 confirm that groups characterized by prolonged exposure duration, high exposure intensity, or reduced adaptive capacity exhibit significantly elevated risk levels. In particular, industrial workers and elderly individuals showed the highest mean risk indices, reflecting cumulative exposure effects and age-related vulnerability.

The elevated risk levels observed among industrial workers are consistent with existing evidence indicating that chronic exposure to chemical and physical hazards in occupational settings substantially increases the likelihood of adverse health outcomes. Even with regulatory control measures in place, long-term low- and medium-intensity exposures may lead to cumulative effects that are not adequately captured by traditional single-factor assessment approaches. The application of integrated risk assessment technologies in this study enabled a more comprehensive evaluation of such cumulative risks.

The high risk indices identified in the elderly population highlight the critical role of age-related physiological changes and comorbidities in modifying health risk profiles. Reduced detoxification capacity, impaired immune response, and the presence of chronic diseases amplify the impact of environmental and social exposures in this group. These findings support the need for age-specific risk assessment models that incorporate vulnerability modifiers rather than relying solely on standardized exposure thresholds.

Healthcare professionals and working-age adults demonstrated increased risk levels primarily associated with psychosocial stressors, occupational workload, and lifestyle-related factors. These results underline the growing importance of non-traditional risk factors, such as psychosocial and organizational determinants, in modern health risk assessment. The integration of these factors into quantitative models represents a significant methodological advancement compared with classical hygienic approaches.

Children and adolescents exhibited comparatively lower mean risk indices; however, their classification as a moderate-risk group should not be interpreted

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

as an absence of concern. Due to ongoing physiological development and heightened sensitivity to environmental stressors, even moderate exposure levels may result in long-term health consequences. This underscores the importance of incorporating life-course perspectives into health risk assessment and prevention strategies.

The graphical distribution of risk levels shown in Figure 2 further illustrates the heterogeneity of health risks across population groups and emphasizes the necessity of differentiated assessment strategies. Uniform risk management approaches are unlikely to be effective in addressing the complex exposure profiles identified in this study. Instead, targeted interventions based on group-specific risk characteristics are required to optimize preventive outcomes.

Overall, the findings demonstrate that modern technologies and methods significantly enhance the precision and applicability of health risk assessment. By integrating quantitative exposure modeling, socio-demographic variables, and occupational characteristics, contemporary approaches provide a robust framework for identifying high-risk groups and supporting evidence-based public health decision-making. These results reinforce the importance of transitioning from generalized risk evaluation toward stratified and technology-driven risk assessment models in population health protection.

Conclusion

The present study demonstrates that modern technologies and methodological approaches significantly improve the accuracy and relevance of health risk assessment across diverse socio-age and occupational population groups. The results confirm that health risks are heterogeneously distributed and largely determined by cumulative exposure, age-related vulnerability, occupational conditions, and social determinants of health.

Population groups characterized by prolonged exposure duration, reduced adaptive capacity, or high-intensity occupational hazards exhibit elevated risk

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

levels, underscoring the limitations of traditional uniform risk assessment approaches. The application of integrated frameworks combining quantitative exposure modeling, biomonitoring, and data-driven analytics enables more precise identification of high-risk groups and supports differentiated prevention strategies.

The findings highlight the importance of incorporating age-specific and occupation-specific parameters into health risk assessment models. Children, elderly individuals, and workers exposed to complex occupational environments require tailored assessment and preventive measures to effectively mitigate long-term health consequences. Integrating modern digital and analytical technologies with classical hygienic and epidemiological methods enhances risk stratification and supports evidence-based public health decision-making.

Overall, the study emphasizes that modern health risk assessment should function as a dynamic and stratified system aimed at reducing health inequalities and improving population health outcomes through targeted, technology-driven preventive interventions.

References

1. Bellinger, D. C. (2013). Prenatal exposures to environmental chemicals and children's neurodevelopment. *Developmental Neuropsychology*, 38(1), 1–27. <https://doi.org/10.1080/87565641.2012.755586>
2. Boobis, A. R., Ossendorp, B. C., & Wilkinson, C. F. (2015). Risk assessment of combined exposure to multiple chemicals. *Toxicology Letters*, 238(3), 193–199. <https://doi.org/10.1016/j.toxlet.2015.08.011>
3. European Food Safety Authority (EFSA). (2019). Guidance on harmonised methodologies for human health risk assessment. *EFSA Journal*, 17(7), e05634. <https://doi.org/10.2903/j.efsa.2019.5634>

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

4. Klimenko, L. V., & Ivanova, E. A. (2018). Occupational risk assessment in industrial environments. *Safety and Health at Work*, 9(4), 405–412. <https://doi.org/10.1016/j.shaw.2018.02.003>
5. Landrigan, P. J., Fuller, R., & Acosta, N. J. R. (2018). The Lancet Commission on pollution and health. *The Lancet*, 391(10119), 462–512. [https://doi.org/10.1016/S0140-6736\(17\)32345-0](https://doi.org/10.1016/S0140-6736(17)32345-0)
6. Smith, K. R., Bruce, N., & Balakrishnan, K. (2014). Millions dead: How do we know and what does it mean? *Methods of Health Risk Assessment. Annual Review of Public Health*, 35, 185–206. <https://doi.org/10.1146/annurev-publhealth-032013-182356>
7. Ташпулатова, Ф. К., Садыков, А. С., & Галиуллин, Т. И. (2017). МЕДИКО-СОЦИАЛЬНЫЕ АСПЕКТЫ ТУБЕРКУЛЕЗА ЛЕГКИХ И ВИЧ. *Фтизиатрия и пульмонология*, (2), 136-136.
8. Bekembayeva, G. S., & Tashpulatova, F. K. (2021). PROGNOSIS OF RESISTANT TUBERCULOSIS COURSE AMONG CHILDREN AND TEENAGERS. *Новый день в медицине*, (1), 48-51.
9. Khomova, N., Tashpulatova, F., & Sultanov, S. (2017). Compliance-is patient adherence to treatment, as well as partnerships between doctor and patient.
10. Ташпулатова, Ф. К., Галиуллин, Т. И., & Жумаев, О. А. (2018). АССОЦИАЦИЯ РИСКА РАЗВИТИЯ КАЗЕОЗНОЙ ПНЕВМОНИИ ПРИ ТУБЕРКУЛЕЗЕ ЛЕГКИХ С ГЕНЕТИЧЕСКИМИ МАРКЕРАМИ. *Интернаука*, (14-1), 52-53.
11. Вахабов, А. А., & Ташпулатова, Ф. К. (2018). Поражение печени у больных туберкулезом легких при побочных реакциях от противотуберкулезных препаратов. *Молодой ученый*, (3), 91-93.
12. Хомова, Н. А., Коломиец, В. М., & Ташпулатова, Ф. К. (2020). Приверженность к лечению больных туберкулезом как фактор риска снижения его эффективности. In Университетская наука: взгляд в будущее (pp. 314-319).

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

13. Tashpulatova, F., Shamshieva, N., Mukhteremova, V., Medvedeva, N., & Kurbanov, A. (2021). Phytotherapy in the Complex Treatment of Patients with Drug-Resistant Forms of Pulmonary Tuberculosis. *Annals of the Romanian Society for Cell Biology*, 25(1), 367-372.
14. Ташпулатова, Ф. К., Жалолов, А. Ж., Медведева, Н. В., & Долгушева, Ю. В. (2016). Уровень комплаенса у больных с лекарственно устойчивым туберкулезом. In *Медицина: вызовы сегодняшнего дня* (pp. 46-50).
15. Tashpulatova, F. K. (2003). Prevention of adverse reactions of antituberculous drugs in pulmonary tuberculosis in patients with different genetic background. *Problemy tuberkuleza i boleznei legkikh*, (6), 17-20.
16. Ташпулатова, Ф. К. (2017). Выявление туберкулеза легких в общесоматических лечебных учреждениях. *Молодой ученый*, (3), 236-238.
17. Ташпулатова, Ф. К., & Абдусаломова, М. И. (2020). Частота и характер побочных реакций от противотуберкулезных лекарственных средств у больных детей туберкулезом. *Новый день в медицине*, 2(30), 544-547.
18. Ташпулатова, Ф. К., & Абдусаломова, М. И. (2020). Частота и характер побочных реакций от противотуберкулезных лекарственных средств у больных детей туберкулезом. *Новый день в медицине*, 2(30), 544-547.
19. Isomov, M. M. (2020). Features of etiopathogenesis and the course of inflammatory processes of periapical tissues in women during pregnancy (review of literature)/Isomov MM, Shomurodov KE, Olimjonov KJ, Azimov IM. *Biomedicine and practice*.—2020.—№ SI-2, 833-838.
20. Isomov, M. M., Shomurodov, K. E., Olimjonov, K. J., & Azimov, I. M. (2020). Features of etiopathogenesis and the course of inflammatory processes of periapical tissues in women during pregnancy. *Journal Biomedicine and Practice*, 833-838.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

21. Shomurodov, K. E., Kuryazova, Z. K., Isomov, M. M., Mukimov, I. I., & Fayziyev, B. R. (2017). Improvement of surgical treatment of fractures of the inferior orbit wall. *J Stomatologiya* 2017, 2, 78-80.
22. Шомуродов, К. Э., & Исомов, М. М. (2020). Мониторинг стационарной и амбулаторной реабилитации беременных женщин с воспалительными заболеваниями ЧЛО. *Стоматология*, 1, 34-37.
23. Shomurodov, K. E., & Isomov, M. M. (2021). Cytokine profile of blood plasma and oral fluid in pregnant women with odontogenic inflammatory diseases. *Central Asian Journal of Medical and Natural Science*, 2(3), 118-122.
24. Исомов, М. М., Шомуродов, К. Э., & Ахмадалиев, Н. Н. (2020). Мониторинг госпитализированных беременных женщин с одонтогенными воспалительными заболеваниями ЧЛО за 2017-2019 гг. на базе клиники взрослой хирургической стоматологии ТГСИ. In *Инновационная стоматология* (pp. 116-119).
25. Мусаев, Ш., Шомуродов, К., & Исомов, М. (2020). Частота и характеристика переломов нижней челюсти у детей. *Стоматология*, 1(1 (78)), 45-48.
26. Шомуродов, К. Э., & Мирхусанова, Р. С. (2021). МРТ визуализация структур небно-глоточной области после уранопластики различными способами. In *Актуальные вопросы стоматологии детского возраста* (pp. 340-346).
27. Шомуродов, К. Э., & Мирхусанова, Р. С. (2020). АНАТОМО-ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МЯГКОГО НЁБА И ЯЗЫЧКА ПОСЛЕ УРАНОПЛАСТИКИ У ДЕТЕЙ С ВРОЖДЁННОЙ РАСЩЕЛИНОЙ НЁБА. In *Современные аспекты комплексной стоматологической реабилитации пациентов с дефектами челюстно-лицевой области* (pp. 187-191).

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaaoa.com/index.php/5>

28. Садикова, Х., Махкамов, Б., Абдувалиев, Н., Мамурбоева, М., & Исомов, М. (2019). Преимущества двухэтапной имплантации с применением пьезоинструментов для костного расщепления и аутогенной плазмы крови, обогащенной тромбоцитами. Стоматология, 1(1 (74)), 24-27.
29. Шомуродов, К. Э., & Мирхусанова, Р. С. СРАВНИТЕЛЬНАЯ ОЦЕНКА СОСТОЯНИЯ НЕБНО-ГЛОТОЧНОГО КОЛЬЦА ПОСЛЕ УРАНОПЛАСТИКИ МЕТОДОМ МРТ. ББК, 56, 56.
30. Искандарова, Ш. Т., Расулова, Н. Ф., Хасанова, М. И., & Юсупалиева, К. Б. (2019). Современные проблемы гигиены почвы в условиях Узбекистана почвы в условиях Узбекистана Ташкент: " Фан.
31. Фахриев, Ж. А., Нозимова, Н. Х., & Расулова, Н. Ф. (2019). Сидячий образ жизни и его влияние на здоровье человека. Теория и практика современной науки, (3 (45)), 318-321.
32. Расулова, Н. Ф. (2016). Совершенствование методов этического воспитания медицинских сестёр лечебно-профилактических учреждений. Молодой ученый, (7), 409-412.
33. Rasulova, N. F., Jalilova, G. A., & Mukhamedova, N. S. (2023). PREVENTION OF IMPORTANT NON-COMMUNICABLE DISEASES AMONG THE POPULATION. Евразийский журнал медицинских и естественных наук, 3(1 Part 2), 2123.
34. Nazarova, S. K., Jalilova, G. A., Mukhamedova, N. S., & Rasulova, N. F. (2021). Features of distance learning organization. Annals of the Romanian Society for Cell Biology, 25(1), 339-347.
35. Усманов, И. А., Джалилова, Г. А., & Расулова, Н. Ф. (2016). К вопросу охраны водных объектов бассейна Амударьи на примере Кашкадарьяинской области. Вестник науки и образования, (2 (14)), 95-98.
36. Мирзаева, М. А., & Расулова, Н. Ф. (2014). Компьютеризация рабочего места медицинских сестер стационара. Сборник статей и тезисов.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

37. Расулова, Н. Ф. (2011). Ўзбекистонда педиатриянинг ривожланиш тарихи.
38. Rasulova, N., Abdullaev, K., & Kuddusova, K. (2024). THE INTEGRATED APPROACH TO THE TREATMENT OF PATIENTS WITH ATROPHIC RHINITIS WHO HAVE COVID-19. *Science and innovation*, 3(D7), 56-60.
39. Расулова, Н. Ф., & Асадова, Г. А. (2023). ИЗУЧЕНИЕ ОСОБЕННОСТИ ЗДОРОВЬЕСОХРАНЯЮЩЕГО ПОВЕДЕНИЯ И САМООЦЕНКИ ЗДОРОВЬЯ СТУДЕНТОВ. *Science and innovation*, 2(Special Issue 8), 978-980.
40. Abdullaev, N. J. (2019). Hygienic assessment of environmental risk factors affecting population health. *Medical Journal of Uzbekistan*, 3, 45–52.
41. Karimov, B. A., & Tursunova, M. R. (2020). Occupational health risks in industrial regions of Uzbekistan. *Uzbek Journal of Public Health*, 2, 21–28.
42. Rakhimov, S. S., & Ismailova, D. K. (2018). Socio-hygienic aspects of population health risk assessment. *Bulletin of Tashkent Medical Academy*, 4, 33–39.
43. Yuldashev, A. K. (2021). Modern approaches to environmental health risk assessment. *Journal of Hygiene and Epidemiology of Uzbekistan*, 1, 14–20.
44. Saidova, G. N., & Khasanov, R. U. (2017). Health risk factors among working-age population in urban areas. *Problems of Biology and Medicine*, 2, 88–92.
45. Mamatkulov, F. K. (2020). Application of GIS technologies in hygienic risk assessment. *Informatics in Medicine*, 1, 55–61.
46. Kurbanova, Z. T., & Nematov, I. A. (2019). Age-related vulnerability in environmental risk assessment. *Pediatrics and Child Health of Uzbekistan*, 3, 26–31.
47. Alimuhamedov, U. S. (2018). Occupational exposure assessment and prevention strategies. *Labor Protection and Safety*, 4, 19–24.
48. World Health Organization. (2022). *Health risk assessment of air pollution: General principles*. WHO Press.