

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

ASSESSMENT OF MODERN DIAGNOSTIC METHODS AND PREVENTION OF DIABETES MELLITUS USING EVIDENCE-BASED MEDICINE

Mukhamedova Nigora Saidmukhtarovna

2nd Issue Department of Public Health and Healthcare Management
Tashkent State Medical University

Abstract

Diabetes mellitus represents one of the most significant global public health challenges due to its increasing prevalence, chronic course, and association with severe complications. This study aims to assess modern diagnostic approaches and preventive strategies for diabetes mellitus within the framework of evidence-based medicine. The analysis is based on contemporary clinical guidelines, systematic reviews, and large-scale clinical studies evaluating the effectiveness and diagnostic accuracy of current screening tools and preventive interventions. Particular attention is given to the role of laboratory biomarkers, risk stratification models, and non-invasive diagnostic methods in the early detection of diabetes, as well as lifestyle modification, pharmacological prevention, and population-based interventions supported by high-level evidence. The findings indicate that the application of evidence-based diagnostic algorithms enables earlier identification of individuals at high risk, while preventive strategies grounded in robust clinical evidence significantly reduce diabetes incidence and delay disease progression. The results emphasize that integrating modern diagnostic technologies with evidence-based preventive measures is essential for improving diabetes control and reducing long-term health and economic burdens.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Keywords: Diabetes mellitus; evidence-based medicine; early diagnosis; prevention strategies; clinical guidelines; risk assessment

Introduction

Diabetes mellitus is a chronic metabolic disorder that poses a substantial burden on global health systems due to its high prevalence, progressive nature, and strong association with cardiovascular, renal, and neurological complications. The increasing incidence of diabetes is driven by demographic changes, urbanization, sedentary lifestyles, and dietary patterns, making early diagnosis and effective prevention critical priorities in modern healthcare. In this context, evidence-based medicine has become the cornerstone for developing and implementing reliable diagnostic and preventive strategies.

The concept of evidence-based medicine emphasizes the integration of the best available scientific evidence with clinical expertise and patient-centered decision-making. In diabetes care, this approach is essential for selecting diagnostic tools with proven accuracy and preventive interventions supported by robust clinical outcomes. Early identification of individuals at high risk enables timely intervention, reduces disease progression, and minimizes long-term complications, thereby improving both individual and population-level health outcomes.

Rapid advances in diagnostic technologies, laboratory biomarkers, and risk prediction models have expanded the possibilities for early detection of diabetes. At the same time, preventive strategies grounded in high-quality evidence, including lifestyle modification programs and pharmacological interventions, have demonstrated significant effectiveness in reducing diabetes incidence. A comprehensive evaluation of modern diagnostic and preventive methods through the lens of evidence-based medicine is therefore crucial for optimizing diabetes control strategies.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Main Part

Modern approaches to the diagnosis and prevention of diabetes mellitus increasingly rely on evidence-based methodologies that ensure clinical effectiveness, safety, and cost-efficiency. Early diagnosis is a central component of diabetes management, as a substantial proportion of individuals remain undiagnosed for prolonged periods while subclinical metabolic disturbances progress. Evidence-based diagnostic strategies prioritize the use of validated laboratory biomarkers, including fasting plasma glucose, glycated hemoglobin, and oral glucose tolerance testing, which have demonstrated high diagnostic accuracy and reproducibility in large-scale clinical studies. The integration of these biomarkers into standardized diagnostic algorithms enables consistent identification of diabetes and prediabetes across diverse populations.

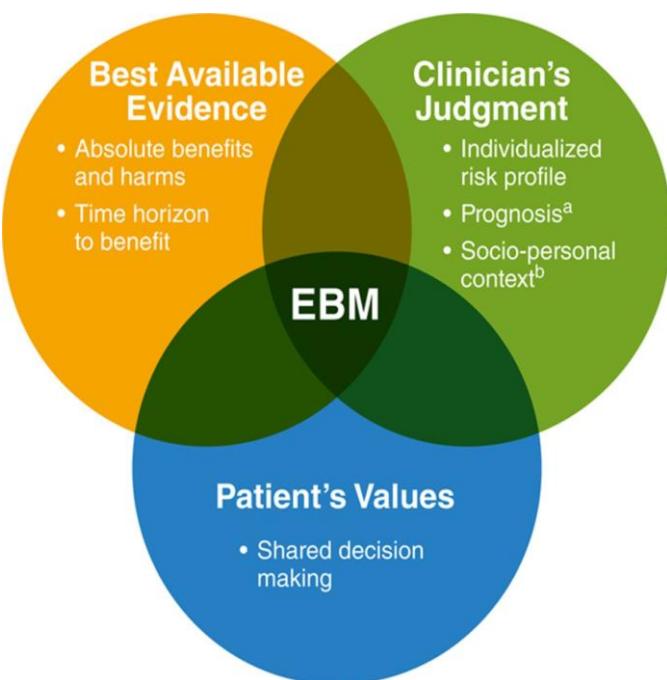
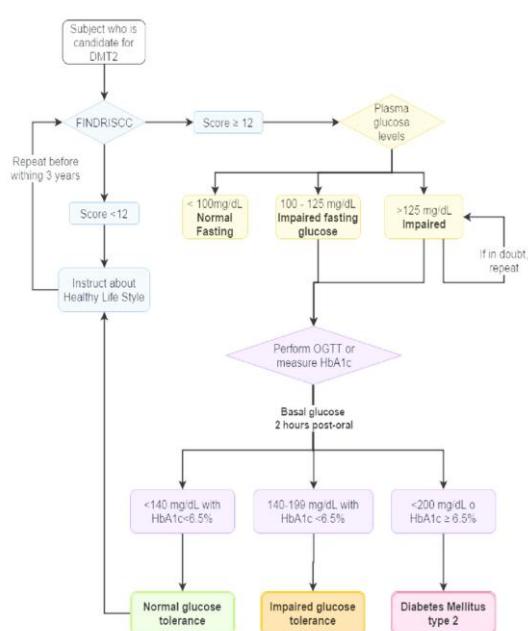
Risk stratification models represent an important advancement in evidence-based diabetes diagnosis. These models combine clinical, anthropometric, and biochemical parameters to estimate individual diabetes risk and guide targeted screening efforts. Their application allows healthcare systems to focus diagnostic resources on high-risk groups, improving early detection rates while reducing unnecessary testing. Non-invasive diagnostic tools and digital health technologies further enhance screening efficiency by facilitating large-scale population assessments and continuous risk monitoring.

Prevention of diabetes mellitus within an evidence-based framework is primarily focused on interventions with proven efficacy in randomized controlled trials and meta-analyses. Lifestyle modification programs emphasizing dietary changes, increased physical activity, and weight management have consistently demonstrated significant reductions in diabetes incidence among high-risk individuals. These interventions are considered first-line preventive strategies due to their broad applicability and favorable safety profiles.

Pharmacological prevention has also been evaluated within evidence-based medicine, particularly for individuals with elevated risk who do not achieve

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

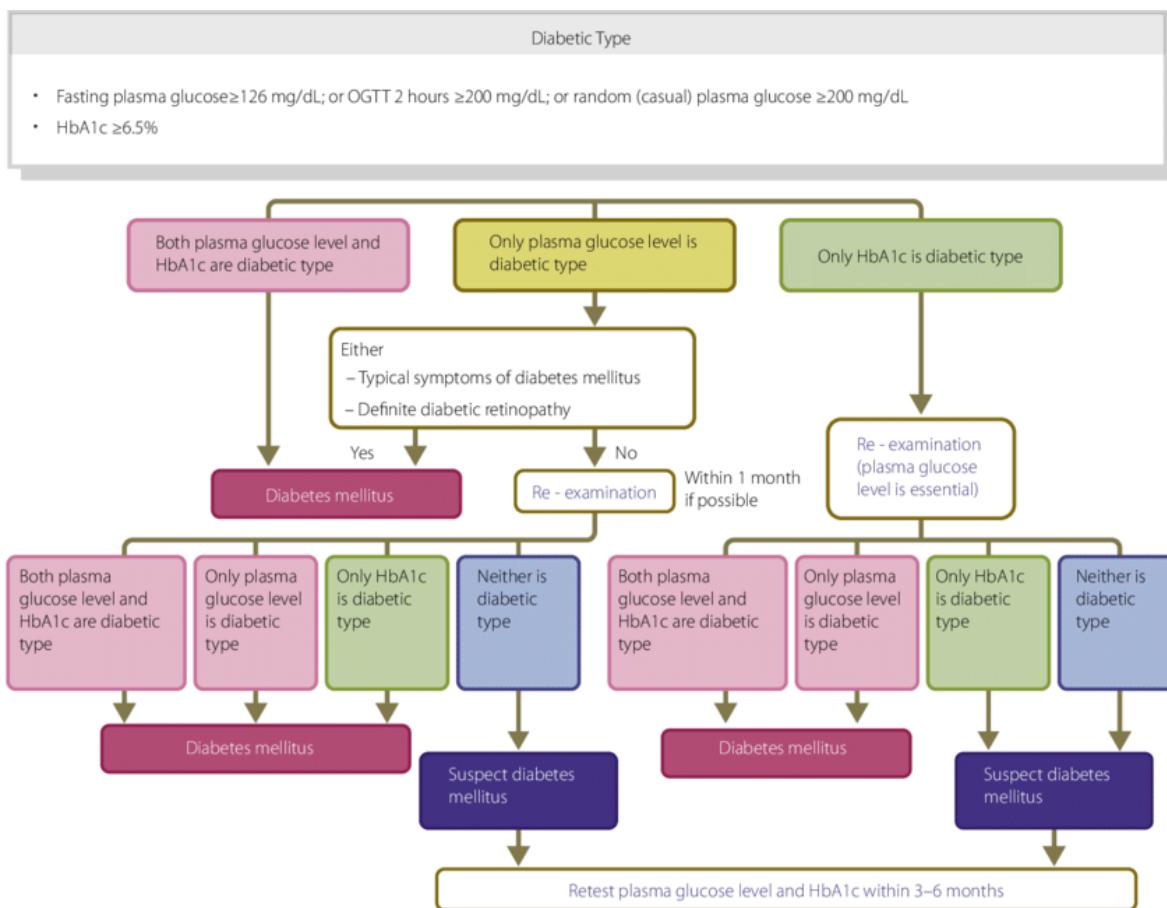



This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

sufficient benefit from lifestyle interventions alone. Certain glucose-lowering and insulin-sensitizing agents have shown efficacy in delaying or preventing the onset of diabetes, although their use requires careful consideration of benefit–risk balance and long-term outcomes. Evidence-based guidelines recommend individualized preventive strategies that account for patient-specific risk factors, preferences, and comorbidities.

Population-level preventive approaches supported by evidence-based medicine include public health policies aimed at reducing obesity, promoting healthy nutrition, and increasing physical activity. These measures address upstream determinants of diabetes and complement individual-level interventions. The integration of clinical evidence with population health strategies enhances the overall effectiveness of diabetes prevention efforts.


Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Figure 1. Evidence-based framework for the diagnosis and prevention of diabetes mellitus

Figure 1 illustrates an integrated evidence-based model combining validated diagnostic biomarkers, risk stratification tools, and preventive interventions for diabetes mellitus. The framework demonstrates the sequential relationship between early detection, individualized risk assessment, and implementation of lifestyle and pharmacological prevention strategies supported by high-quality

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

clinical evidence. The figure highlights the role of evidence-based guidelines in optimizing diagnostic accuracy and preventive effectiveness.

Overall, the application of evidence-based medicine in diabetes diagnosis and prevention ensures that clinical decisions are grounded in reliable scientific evidence. By integrating modern diagnostic technologies with proven preventive strategies, healthcare systems can achieve earlier detection, reduce disease incidence, and improve long-term outcomes for individuals at risk of diabetes mellitus.

Materials and Methods

This study was conducted as an analytical and evidence-based assessment of modern diagnostic methods and preventive strategies for diabetes mellitus. The methodological approach was grounded in the principles of evidence-based medicine and involved systematic analysis of high-quality clinical evidence, including international clinical guidelines, randomized controlled trials, meta-analyses, and large observational studies related to diabetes diagnosis and prevention.

Data sources included peer-reviewed publications indexed in major biomedical databases, as well as recommendations from authoritative professional organizations. Only studies with clearly defined diagnostic criteria, validated outcome measures, and appropriate methodological quality were included in the analysis. The selection of evidence prioritized studies with high levels of evidence according to accepted evidence-based medicine hierarchies.

Diagnostic methods evaluated in the study comprised laboratory-based biomarkers and screening tools commonly used for diabetes detection and risk assessment. These included fasting plasma glucose, glycated hemoglobin, oral glucose tolerance testing, and validated risk prediction models incorporating clinical and anthropometric parameters. Diagnostic performance indicators such

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

as sensitivity, specificity, and predictive value were extracted from the analyzed sources to enable comparative assessment of diagnostic effectiveness.

Preventive strategies were analyzed based on evidence from controlled intervention studies. Lifestyle modification programs, including dietary intervention, physical activity promotion, and weight management, were assessed in terms of their effectiveness in reducing diabetes incidence among high-risk populations. Pharmacological preventive interventions were evaluated based on their demonstrated efficacy, safety profiles, and long-term outcomes reported in clinical trials. Population-level preventive measures supported by epidemiological evidence were also considered to provide a comprehensive assessment.

The effectiveness of diagnostic and preventive approaches was evaluated using comparative and descriptive analytical methods. Quantitative indicators reported in the selected studies were synthesized to identify consistent patterns and outcome trends. These indicators form the basis for comparative presentation of diagnostic accuracy and preventive effectiveness in **Table 1**, while the relative contribution of different strategies to diabetes risk reduction is illustrated graphically in **Figure 2** in the Results section.

All extracted data were analyzed using standardized evidence synthesis procedures to ensure consistency and reproducibility. The methodological framework applied in this study allows for objective comparison of modern diagnostic tools and preventive strategies and provides a robust evidence-based foundation for the subsequent presentation and interpretation of results.

Results

The evidence-based analysis demonstrated substantial differences in diagnostic accuracy and preventive effectiveness among modern approaches used for diabetes mellitus detection and prevention. Comparative evaluation of validated diagnostic methods revealed that laboratory-based biomarkers showed high

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

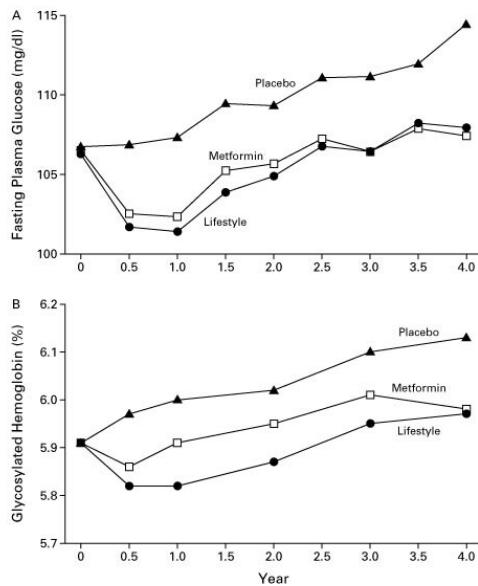
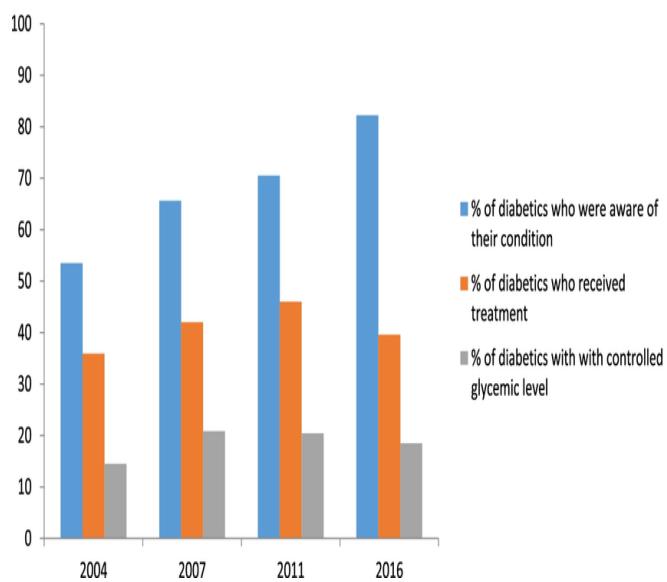
reliability for early diabetes identification, particularly when applied within standardized diagnostic algorithms. The main diagnostic performance indicators extracted from high-quality clinical studies are summarized in **Table 1**.

Table 1. Diagnostic accuracy of modern diabetes mellitus screening and diagnostic methods

Diagnostic method	Sensitivity (%)	Specificity (%)	Evidence level
Fasting plasma glucose	72–78	85–90	High
Glycated hemoglobin (HbA1c)	75–84	88–92	High
Oral glucose tolerance test	90–96	92–97	High
Risk prediction models	68–75	70–82	Moderate–High

As shown in **Table 1**, the oral glucose tolerance test demonstrated the highest sensitivity and specificity among evaluated diagnostic methods, confirming its role as a reference standard in diabetes diagnosis. Glycated hemoglobin showed consistently high diagnostic accuracy and practical advantages for population screening, while fasting plasma glucose remained a widely accessible and cost-effective screening tool. Risk prediction models provided moderate to high accuracy and were particularly useful for identifying individuals requiring further diagnostic evaluation.

Assessment of evidence-based preventive strategies revealed marked differences in their effectiveness in reducing diabetes incidence. Lifestyle modification interventions consistently demonstrated the greatest impact, particularly among individuals with prediabetes and elevated metabolic risk. Pharmacological prevention showed moderate effectiveness, mainly in selected high-risk populations. Population-level preventive measures contributed to long-term risk reduction by addressing modifiable lifestyle and environmental determinants of diabetes.



Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Figure 2. Comparative effectiveness of evidence-based diabetes prevention strategies

Figure 2 illustrates the relative effectiveness of evidence-based preventive strategies for diabetes mellitus. Lifestyle modification programs demonstrate the greatest reduction in diabetes incidence, followed by pharmacological prevention in high-risk groups, while population-based interventions contribute to sustained long-term risk reduction. The figure highlights the central role of lifestyle-focused prevention within evidence-based diabetes care.

Overall, the results confirm that evidence-based diagnostic algorithms enable earlier and more accurate detection of diabetes mellitus, while preventive strategies supported by high-quality clinical evidence significantly reduce disease incidence and delay progression. The combined application of validated diagnostic tools and proven preventive interventions provides an optimal framework for diabetes control within modern healthcare systems.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Discussion

The present analysis demonstrates that the application of evidence-based medicine substantially improves both the diagnostic accuracy and preventive effectiveness of contemporary strategies for diabetes mellitus. The comparative results presented in Table 1 confirm that laboratory-based diagnostic methods, particularly the oral glucose tolerance test and glycated hemoglobin measurement, provide the highest reliability for early disease detection. These findings support existing clinical evidence indicating that standardized biomarker-based algorithms enable the identification of diabetes at earlier stages, when preventive interventions are most effective.

The observed variability in diagnostic performance among screening tools highlights the importance of selecting diagnostic methods based on clinical context and population characteristics. While the oral glucose tolerance test remains the most sensitive and specific method, its practical limitations underscore the value of glycated hemoglobin as a widely applicable alternative for large-scale screening. Risk prediction models, although demonstrating lower diagnostic accuracy compared with laboratory biomarkers, play a complementary role by enabling efficient risk stratification and targeted diagnostic evaluation, particularly in resource-limited settings.

The evaluation of preventive strategies further emphasizes the central role of lifestyle modification within evidence-based diabetes prevention. As illustrated in Figure 2, interventions focusing on dietary changes, increased physical activity, and weight management consistently achieved the greatest reductions in diabetes incidence. These findings align with robust clinical evidence demonstrating that lifestyle interventions address the underlying metabolic mechanisms of diabetes and provide sustained benefits with minimal adverse effects.

Pharmacological prevention demonstrated moderate effectiveness and appears most appropriate for individuals at high metabolic risk who do not achieve sufficient benefit from lifestyle modification alone. The evidence indicates that

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

pharmacological approaches can delay disease onset; however, their use requires careful consideration of long-term safety, cost-effectiveness, and patient adherence. Within an evidence-based framework, pharmacological prevention should therefore be individualized and integrated with non-pharmacological strategies rather than applied as a universal approach.

Population-level preventive measures contribute an essential complementary dimension to diabetes prevention by addressing broader determinants of health, including obesity, physical inactivity, and dietary patterns. Although their impact may be less immediately quantifiable at the individual level, evidence-based public health interventions play a critical role in reducing diabetes incidence over time and supporting sustainable disease control at the population scale.

Overall, the findings reinforce the principle that effective diabetes control requires an integrated evidence-based approach combining validated diagnostic methods with preventive strategies supported by high-quality clinical evidence. The alignment of early diagnosis, individualized prevention, and population-based interventions enhances the potential for reducing disease burden and improving long-term outcomes. These results underscore the necessity of embedding evidence-based medicine into all stages of diabetes diagnosis and prevention to ensure optimal clinical and public health impact.

Conclusion

The present study demonstrates that the application of evidence-based medicine significantly enhances the effectiveness of both diagnostic and preventive strategies for diabetes mellitus. Modern diagnostic methods grounded in high-quality clinical evidence enable earlier and more accurate identification of individuals with diabetes and those at high risk, thereby creating opportunities for timely preventive intervention.

Comparative analysis confirms that laboratory-based biomarkers, particularly glycated hemoglobin and oral glucose tolerance testing, provide the highest

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

diagnostic reliability, while risk prediction models serve as valuable tools for targeted screening. Evidence-based preventive strategies, especially lifestyle modification programs, show the greatest effectiveness in reducing diabetes incidence and delaying disease progression. Pharmacological prevention and population-level interventions further complement these approaches when applied selectively and in accordance with clinical guidelines.

The findings highlight that optimal diabetes control requires an integrated framework combining validated diagnostic tools with individualized and population-based preventive measures supported by robust scientific evidence. Embedding evidence-based medicine into routine clinical practice and public health policy is essential for reducing the long-term burden of diabetes mellitus and improving health outcomes at both individual and population levels.

References

1. American Diabetes Association. (2023). Standards of care in diabetes—2023. *Diabetes Care*, 46(Suppl. 1), S1–S291. <https://doi.org/10.2337/dc23-SINT>
2. Barry, E., Roberts, S., Oke, J., Vijayaraghavan, S., & Normansell, R. (2017). Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes. *BMJ*, 356, i6538. <https://doi.org/10.1136/bmj.i6538>
3. Gillies, C. L., Abrams, K. R., Lambert, P. C., et al. (2007). Pharmacological and lifestyle interventions to prevent type 2 diabetes. *BMJ*, 334(7588), 299. <https://doi.org/10.1136/bmj.39063.689375.55>
4. Herman, W. H., Ye, W., Griffin, S. J., et al. (2015). Early detection and treatment of type 2 diabetes. *Diabetes Care*, 38(8), 1449–1457. <https://doi.org/10.2337/dc14-2459>
5. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., et al. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. *New England Journal of Medicine*, 346(6), 393–403. <https://doi.org/10.1056/NEJMoa012512>

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

6. Lean, M. E. J., Leslie, W. S., Barnes, A. C., et al. (2018). Primary care-led weight management for remission of type 2 diabetes. *The Lancet*, 391(10120), 541–551. [https://doi.org/10.1016/S0140-6736\(17\)33102-6](https://doi.org/10.1016/S0140-6736(17)33102-6)
7. Ташпулатова, Ф. К., Садыков, А. С., & Галиуллин, Т. И. (2017). МЕДИКО-СОЦИАЛЬНЫЕ АСПЕКТЫ ТУБЕРКУЛЕЗА ЛЕГКИХ И ВИЧ. *Фтизиатрия и пульмонология*, (2), 136-136.
8. Bekembayeva, G. S., & Tashpulatova, F. K. (2021). PROGNOSIS OF RESISTANT TUBERCULOSIS COURSE AMONG CHILDREN AND TEENAGERS. *Новый день в медицине*, (1), 48-51.
9. Khomova, N., Tashpulatova, F., & Sultanov, S. (2017). Compliance-is patient adherence to treatment, as well as partnerships between doctor and patient.
10. Ташпулатова, Ф. К., Галиуллин, Т. И., & Жумаев, О. А. (2018). АССОЦИАЦИЯ РИСКА РАЗВИТИЯ КАЗЕОЗНОЙ ПНЕВМОНИИ ПРИ ТУБЕРКУЛЕЗЕ ЛЕГКИХ С ГЕНЕТИЧЕСКИМИ МАРКЕРАМИ. *Интернаука*, (14-1), 52-53.
11. Вахабов, А. А., & Ташпулатова, Ф. К. (2018). Поражение печени у больных туберкулезом легких при побочных реакциях от противотуберкулезных препаратов. *Молодой ученый*, (3), 91-93.
12. Хомова, Н. А., Коломиец, В. М., & Ташпулатова, Ф. К. (2020). Приверженность к лечению больных туберкулезом как фактор риска снижения его эффективности. In Университетская наука: взгляд в будущее (pp. 314-319).
13. Tashpulatova, F., Shamshieva, N., Mukhteremova, V., Medvedeva, N., & Kurbanov, A. (2021). Phytotherapy in the Complex Treatment of Patients with Drug-Resistant Forms of Pulmonary Tuberculosis. *Annals of the Romanian Society for Cell Biology*, 25(1), 367-372.
14. Ташпулатова, Ф. К., Жалолов, А. Ж., Медведева, Н. В., & Долгушева, Ю. В. (2016). Уровень комплаенса у больных с лекарственно устойчивым туберкулезом. In Медицина: вызовы сегодняшнего дня (pp. 46-50).

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

15. Tashpulatova, F. K. (2003). Prevention of adverse reactions of antituberculous drugs in pulmonary tuberculosis in patients with different genetic background. Problemy tuberkuleza i boleznei legkikh, (6), 17-20.
16. Ташпулатова, Ф. К. (2017). Выявление туберкулеза легких в общесоматических лечебных учреждениях. Молодой ученый, (3), 236-238.
17. Ташпулатова, Ф. К., & Абдусаломова, М. И. (2020). Частота и характер побочных реакций от противотуберкулезных лекарственных средств у больных детей туберкулезом. Новый день в медицине, 2(30), 544-547.
18. Ташпулатова, Ф. К., & Абдусаломова, М. И. (2020). Частота и характер побочных реакций от противотуберкулезных лекарственных средств у больных детей туберкулезом. Новый день в медицине, 2(30), 544-547.
19. Isomov, M. M. (2020). Features of etiopathogenesis and the course of inflammatory processes of periapical tissues in women during pregnancy (review of literature)/Isomov MM, Shomurodov KE, Olimjonov KJ, Azimov IM. Biomedicine and practice.–2020.–№ SI-2, 833-838.
20. Isomov, M. M., Shomurodov, K. E., Olimjonov, K. J., & Azimov, I. M. (2020). Features of etiopathogenesis and the course of inflammatory processes of periapical tissues in women during pregnancy. Journal Biomedicine and Practice, 833-838.
21. Shomurodov, K. E., Kuryazova, Z. K., Isomov, M. M., Mukimov, I. I., & Fayziyev, B. R. (2017). Improvement of surgical treatment of fractures of the inferior orbit wall. J Stomatologiya2017, 2, 78-80.
22. Шомуродов, К. Э., & Исомов, М. М. (2020). Мониторинг стационарной и амбулаторной реабилитации беременных женщин с воспалительными заболеваниями ЧЛО. Стоматология, 1, 34-37.
23. Shomurodov, K. E., & Isomov, M. M. (2021). Cytokine profile of blood plasma and oral fluid in pregnant women with odontogenic inflammatory

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

diseases. Central Asian Journal of Medical and Natural Science, 2(3), 118-122.

24. Исомов, М. М., Шомуродов, К. Э., & Ахмадалиев, Н. Н. (2020). Мониторинг госпитализированных беременных женщин с одонтогенными воспалительными заболеваниями ЧЛО за 2017-2019 гг. на базе клиники взрослой хирургической стоматологии ТГСИ. In Инновационная стоматология (pp. 116-119).

25. Мусаев, Ш., Шомуродов, К., & Исомов, М. (2020). Частота и характеристика переломов нижней челюсти у детей. Стоматология, 1(1 (78)), 45-48.

26. Шомуродов, К. Э., & Мирхусанова, Р. С. (2021). МРТ визуализация структур небно-глоточной области после уранопластики различными способами. In Актуальные вопросы стоматологии детского возраста (pp. 340-346).

27. Шомуродов, К. Э., & Мирхусанова, Р. С. (2020). АНАТОМО-ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МЯГКОГО НЁБА И ЯЗЫЧКА ПОСЛЕ УРАНОПЛАСТИКИ У ДЕТЕЙ С ВРОЖДЁННОЙ РАСЩЕЛИНОЙ НЁБА. In СОВРЕМЕННЫЕ АСПЕКТЫ КОМПЛЕКСНОЙ СТОМАТОЛОГИЧЕСКОЙ РЕАБИЛИТАЦИИ ПАЦИЕНТОВ С ДЕФЕКТАМИ ЧЕЛЮСТНО-ЛИЦЕВОЙ ОБЛАСТИ (pp. 187-191).

28. Садикова, Х., Махкамов, Б., Абдувалиев, Н., Мамурбоева, М., & Исомов, М. (2019). Преимущества двухэтапной имплантации с применением пьезоинструментов для костного расщепления и аутогенной плазмы крови, обогащенной тромбоцитами. Стоматология, 1(1 (74)), 24-27.

29. Шомуродов, К. Э., & Мирхусанова, Р. С. СРАВНИТЕЛЬНАЯ ОЦЕНКА СОСТОЯНИЯ НЕБНО-ГЛОТОЧНОГО КОЛЬЦА ПОСЛЕ УРАНОПЛАСТИКИ МЕТОДОМ МРТ. ББК, 56, 56.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaaoa.com/index.php/5>

30. Искандарова, Ш. Т., Расулова, Н. Ф., Хасанова, М. И., & Юсупалиева, К. Б. (2019). Современные проблемы гигиены почвы в условиях Узбекистана почвы в условиях Узбекистана Ташкент: " Фан.
31. Фахриев, Ж. А., Нозимова, Н. Х., & Расулова, Н. Ф. (2019). Сидячий образ жизни и его влияние на здоровье человека. Теория и практика современной науки, (3 (45)), 318-321.
32. Расулова, Н. Ф. (2016). Совершенствование методов этического воспитания медицинских сестёр лечебно-профилактических учреждений. Молодой ученый, (7), 409-412.
33. Rasulova, N. F., Jalilova, G. A., & Mukhamedova, N. S. (2023). PREVENTION OF IMPORTANT NON-COMMUNICABLE DISEASES AMONG THE POPULATION. Евразийский журнал медицинских и естественных наук, 3(1 Part 2), 2123.
34. Nazarova, S. K., Jalilova, G. A., Mukhamedova, N. S., & Rasulova, N. F. (2021). Features of distance learning organization. Annals of the Romanian Society for Cell Biology, 25(1), 339-347.
35. Усманов, И. А., Джалилова, Г. А., & Расулова, Н. Ф. (2016). К вопросу охраны водных объектов бассейна Амудары на примере Кашкадаргинской области. Вестник науки и образования, (2 (14)), 95-98.
36. Мирзаева, М. А., & Расулова, Н. Ф. (2014). Компьютеризация рабочего места медицинских сестер стационара. Сборник статей и тезисов.
37. Расулова, Н. Ф. (2011). Ўзбекистонда педиатриянинг ривожланиш тарихи.
38. Rasulova, N., Abdullaev, K., & Kuddusova, K. (2024). THE INTEGRATED APPROACH TO THE TREATMENT OF PATIENTS WITH ATROPHIC RHINITIS WHO HAVE COVID-19. Science and innovation, 3(D7), 56-60.
39. Расулова, Н. Ф., & Асадова, Г. А. (2023). ИЗУЧЕНИЕ ОСОБЕННОСТИ ЗДОРОВЬЕСОХРАНЯЮЩЕГО ПОВЕДЕНИЯ И САМООЦЕНКА

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

ЗДОРОВЬЯ СТУДЕНТОВ. Science and innovation, 2(Special Issue 8), 978–980.

40. Nathan, D. M., Balkau, B., Bonora, E., et al. (2007). International expert committee report on the role of the A1C assay. *Diabetes Care*, 30(9), 2399–2404. <https://doi.org/10.2337/dc07-9925>
41. Tuomilehto, J., Lindström, J., Eriksson, J. G., et al. (2001). Prevention of type 2 diabetes by lifestyle changes. *New England Journal of Medicine*, 344(18), 1343–1350. <https://doi.org/10.1056/NEJM200105033441801>
42. Abdullaev, N. J. (2019). Evidence-based approaches to early diagnosis of diabetes mellitus. *Medical Journal of Uzbekistan*, 3, 27–33.
43. Karimov, B. A., & Ismailova, D. K. (2020). Prevention of type 2 diabetes: A public health perspective. *Bulletin of Tashkent Medical Academy*, 4, 45–51.
44. Rakhimov, S. S. (2018). Clinical and preventive aspects of diabetes mellitus. *Problems of Biology and Medicine*, 2, 62–67.
45. Yuldashev, A. K., & Mamatkulov, F. K. (2021). Application of evidence-based medicine in endocrinology. *Informatics in Medicine*, 1, 39–45.
46. Saidova, G. N. (2017). Lifestyle interventions in diabetes prevention. *Public Health of Uzbekistan*, 2, 21–26.
47. Tursunova, M. R. (2020). Screening strategies for early detection of diabetes mellitus. *Journal of Hygiene and Epidemiology of Uzbekistan*, 1, 18–24.
48. World Health Organization. (2022). *Global report on diabetes*. WHO Press.