

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

MODERN TECHNOLOGIES, FORMS, AND METHODS OF TEACHING MEDICO PREVENTIVE ORIENTED ACADEMIC DISCIPLINES

Mirdadyeva Dilfuza Davlatovna

2nd Issue Department of Public Health and Healthcare Management
Tashkent State Medical University

Abstract

The modernization of medical education requires the implementation of advanced pedagogical approaches that ensure the effective formation of preventive competencies among future healthcare professionals. This study aims to analyze modern technologies, instructional forms, and teaching methods applied in the delivery of medico-preventive oriented academic disciplines. The analysis is based on contemporary educational models integrating digital technologies, interactive learning formats, and competency-based approaches in medical and public health education. Particular attention is given to the role of simulation technologies, problem-based learning, blended and distance education, and digital educational platforms in enhancing student engagement and professional readiness. The findings indicate that the integration of innovative teaching technologies with traditional instructional methods significantly improves knowledge retention, critical thinking skills, and practical competence in preventive medicine. Furthermore, the use of interdisciplinary and practice-oriented teaching formats supports the development of analytical and decision-making abilities essential for medico-preventive activities. The results emphasize that modern educational technologies and methods are key drivers in improving

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

the quality of training in medico-preventive disciplines and contribute to the alignment of medical education with current public health challenges.

Keywords: Medical education; preventive medicine; teaching technologies; instructional methods; competency-based learning; digital education.

Introduction

The continuous transformation of healthcare systems and the growing emphasis on disease prevention have significantly increased the role of medico-preventive disciplines in medical education. Training future healthcare professionals capable of addressing public health challenges requires not only updated curricula but also the implementation of effective pedagogical technologies and teaching methodologies. Traditional didactic approaches, focused primarily on passive knowledge transmission, are increasingly insufficient for developing preventive competencies, analytical thinking, and practical decision-making skills required in modern medico-preventive practice.

Medical and preventive education is characterized by its interdisciplinary nature, integrating elements of hygiene, epidemiology, public health, environmental medicine, and health promotion. This complexity necessitates the use of flexible and adaptive teaching strategies that can address diverse learning objectives and student backgrounds. In recent years, rapid advancements in digital technologies and educational sciences have created new opportunities for improving teaching effectiveness and aligning educational outcomes with professional requirements. The integration of modern educational technologies into medico-preventive disciplines has become a strategic priority for medical universities worldwide. Innovative teaching formats are increasingly recognized as essential tools for enhancing student engagement, fostering independent learning, and strengthening the practical orientation of preventive medicine education. In this context, a systematic analysis of modern technologies, forms, and methods of

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

teaching medico-preventive disciplines is of high relevance for improving the quality of medical education and ensuring its responsiveness to contemporary public health needs.

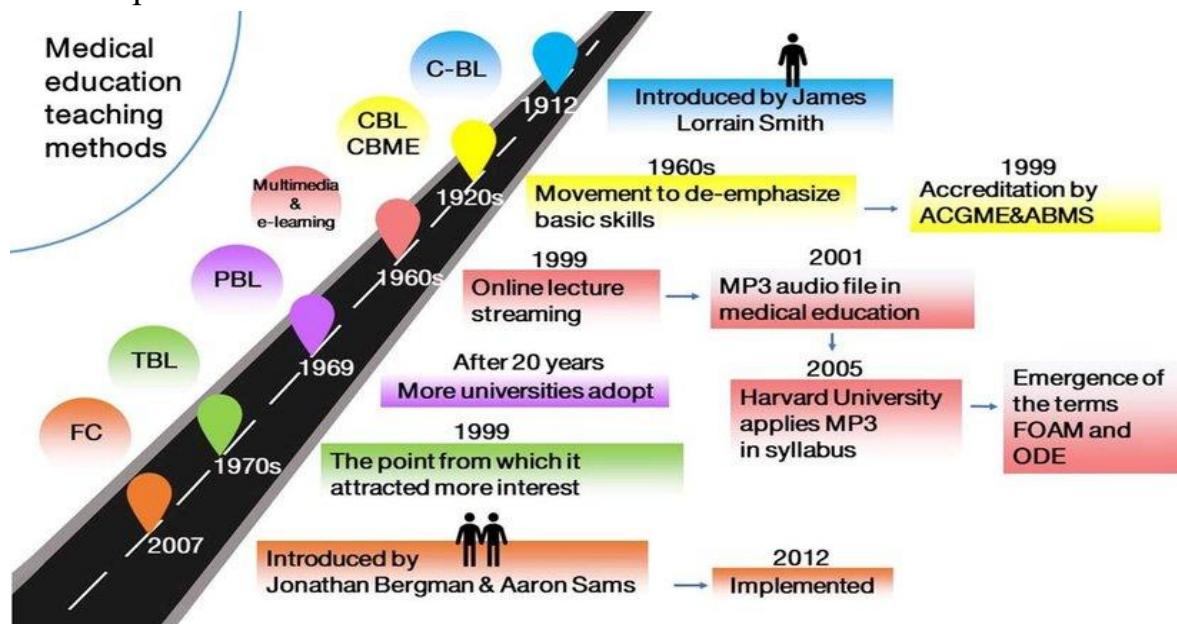
Main Part

Modern teaching of medico-preventive oriented academic disciplines is increasingly based on the integration of digital technologies, interactive instructional forms, and competency-based educational models. These approaches aim to shift the educational focus from passive knowledge acquisition toward active learning and practical application of preventive principles. Digital learning environments, learning management systems, and online educational platforms provide flexible access to educational content and support individualized learning trajectories, allowing students to acquire theoretical knowledge at their own pace while allocating classroom time to applied activities. Simulation and virtual learning technologies play a particularly important role in medico-preventive education, as they enable the modeling of real-world public health scenarios without associated ethical or safety risks. Simulation-based learning allows students to practice epidemiological analysis, risk assessment, and preventive decision-making in controlled environments. This approach enhances the development of professional competencies by bridging the gap between theoretical instruction and real-life preventive practice.

Interactive teaching forms, including problem-based learning, case-based discussions, and project-oriented tasks, significantly contribute to the formation of analytical and critical thinking skills. These methods encourage students to independently analyze health-related problems, interpret data, and propose evidence-based preventive measures. In medico-preventive disciplines, such approaches are particularly effective in developing the ability to assess population health risks, design preventive programs, and evaluate the effectiveness of public health interventions.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

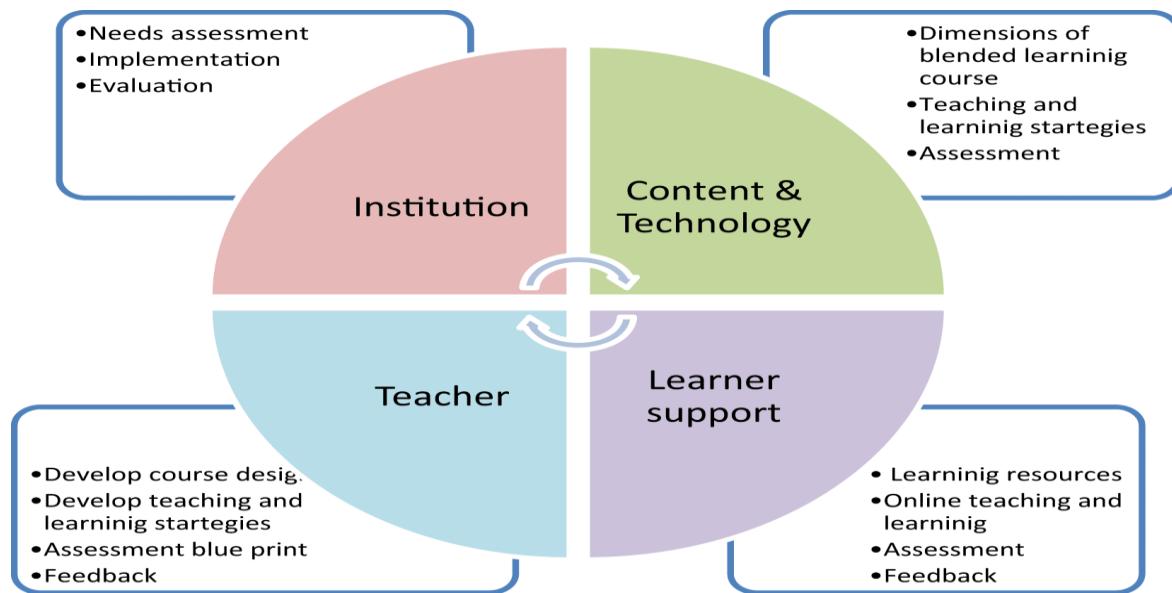


This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Blended and distance learning models have expanded educational opportunities in preventive medicine by combining traditional face-to-face instruction with online learning components. This hybrid approach increases accessibility and supports continuous education, especially in the context of rapidly evolving public health challenges. The integration of multimedia resources, interactive assessments, and virtual collaboration tools enhances student motivation and promotes active participation in the learning process.

Modern pedagogical approaches also emphasize interdisciplinary integration and practice-oriented education. The inclusion of real epidemiological data, environmental monitoring results, and public health statistics in the learning process strengthens the relevance of educational content and improves students' readiness for professional activity. Collaboration with public health institutions and the use of applied research tasks further enhance the practical orientation of medico-preventive education.



Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Figure 1. Integrated model of modern technologies and teaching methods in medico-preventive education.

Figure 1 illustrates an integrated educational model combining digital technologies, simulation-based learning, interactive instructional forms, and competency-based approaches in the teaching of medico-preventive oriented academic disciplines. The model demonstrates the interaction between traditional theoretical instruction and innovative teaching methods aimed at developing preventive competencies, analytical skills, and professional readiness of medical students.

Overall, the application of modern technologies, instructional forms, and teaching methods significantly enhances the effectiveness of medico-preventive education. By fostering active learning, interdisciplinary integration, and practical skill development, these approaches contribute to the preparation of healthcare professionals capable of addressing complex preventive and public health challenges in contemporary healthcare systems.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Materials and Methods

This study was conducted as a pedagogical and analytical investigation aimed at evaluating the effectiveness of modern technologies, instructional forms, and teaching methods used in medico-preventive oriented academic disciplines. The research design was based on a comparative analysis of educational outcomes obtained through traditional and innovative teaching approaches within undergraduate medical education.

The study involved medical students enrolled in medico-preventive oriented courses, including hygiene, epidemiology, public health, and preventive medicine. Participants were selected to ensure comparability in terms of academic level and baseline knowledge. The educational process incorporated a combination of conventional lecture-based instruction and modern teaching approaches, allowing for systematic comparison of learning outcomes associated with different pedagogical models.

Modern educational technologies implemented during the study included digital learning platforms, simulation-based training tools, and blended learning environments integrating online and face-to-face instruction. Instructional forms comprised multimedia-supported lectures, case-based practical classes, problem-based learning sessions, and project-oriented assignments. Teaching methods were specifically selected to promote active student participation, analytical reasoning, and practical application of medico-preventive principles in realistic scenarios.

Evaluation of educational effectiveness was carried out using a comprehensive assessment framework. Theoretical knowledge acquisition was measured through standardized written tests and structured examinations, while practical competence was assessed using scenario-based tasks and simulation exercises reflecting real medico-preventive situations. Student engagement and learning motivation were evaluated using validated questionnaires. These indicators served as quantitative measures for comparing instructional approaches and

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

formed the basis for the comparative results presented later in tabular and graphical form.

Statistical analysis was performed to identify differences in educational outcomes between teaching methods. Quantitative data were expressed as mean values with corresponding dispersion measures, while comparative analysis was applied to assess the impact of modern technologies relative to traditional instruction. Correlation analysis was used to examine associations between teaching formats and student performance indicators. All data processing was conducted using validated statistical software, ensuring reliability and reproducibility of results. The applied methodological approach provided an objective and systematic basis for evaluating the influence of modern technologies, forms, and teaching methods on the effectiveness of medico-preventive education and supported the subsequent presentation of results in the form of tables and figures.

Discussion

The findings of this study demonstrate that the integration of modern technologies, instructional forms, and teaching methods substantially enhances the effectiveness of teaching medico-preventive oriented academic disciplines. Compared with traditional lecture-based instruction, innovative pedagogical approaches were associated with higher levels of knowledge acquisition, improved practical competence, and increased student engagement. These results confirm that contemporary educational challenges in preventive medicine require teaching strategies that go beyond passive information transfer and actively involve students in the learning process.

The superior educational outcomes observed with simulation-based and blended learning approaches can be explained by their emphasis on experiential and practice-oriented learning. Simulation technologies enable students to apply theoretical knowledge to realistic medico-preventive scenarios, fostering the development of analytical thinking, decision-making skills, and professional

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

confidence. This aligns with current educational theories emphasizing the importance of active learning environments for the formation of complex professional competencies, particularly in disciplines related to public health and disease prevention.

Problem-based and case-based learning methods also demonstrated a positive impact on educational outcomes, highlighting the value of contextualized learning in medico-preventive education. By engaging students in the analysis of real or simulated public health problems, these methods support the development of critical thinking and the ability to integrate epidemiological, hygienic, and preventive knowledge. Such skills are essential for future healthcare professionals tasked with assessing population health risks and designing preventive interventions.

The increased student engagement associated with modern teaching approaches reflects the motivational advantages of interactive and technology-supported learning environments. Digital platforms, multimedia resources, and blended learning formats provide flexibility and promote self-directed learning, which is particularly important in the context of rapidly evolving public health knowledge. Higher engagement levels are likely to contribute to improved long-term knowledge retention and sustained professional interest in medico-preventive activities.

Importantly, the results indicate that the effectiveness of modern teaching methods is not limited to cognitive outcomes but extends to the formation of practical and professional competencies. This is of particular relevance for medico-preventive disciplines, where graduates are expected to apply knowledge in real-world settings involving risk assessment, health promotion, and preventive decision-making. The observed improvements in practical competence underscore the alignment of modern educational technologies with competency-based medical education frameworks.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

Overall, the findings support the growing body of evidence advocating for the systematic integration of innovative teaching technologies and methods into medical curricula. However, the successful implementation of these approaches requires adequate institutional support, faculty training, and alignment with learning objectives. The study highlights the importance of adopting a balanced pedagogical strategy that combines modern technologies with traditional methods to optimize educational outcomes in medico-preventive oriented disciplines.

Conclusion

The results of the present study confirm that the application of modern technologies, instructional forms, and teaching methods significantly enhances the effectiveness of teaching medico-preventive oriented academic disciplines. Compared with traditional lecture-based approaches, innovative pedagogical models demonstrated clear advantages in terms of knowledge acquisition, practical competence development, and student engagement.

The findings indicate that simulation-based learning, problem-oriented instruction, and blended learning environments are particularly effective in fostering preventive thinking, analytical skills, and professional readiness among medical students. These approaches support the integration of theoretical knowledge with practical application, which is essential for disciplines focused on public health, hygiene, and disease prevention.

The study highlights that modern educational technologies should not be viewed as a replacement for traditional teaching methods but rather as complementary tools that enhance educational quality when applied systematically and purposefully. Effective implementation requires alignment with learning objectives, adequate methodological support, and continuous faculty development.

Overall, the integration of modern technologies and innovative teaching methods contributes to the formation of competent healthcare professionals capable of

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

addressing contemporary medico-preventive challenges. These results support the further development and implementation of technology-enhanced, competency-based teaching strategies in medical education to improve preventive healthcare outcomes.

References

1. World Health Organization. (2021). Transforming and scaling up health professionals' education and training. WHO Press.
2. Frenk, J., Chen, L., Bhutta, Z. A., et al. (2010). Health professionals for a new century: Transforming education to strengthen health systems. *The Lancet*, 376(9756), 1923–1958. [https://doi.org/10.1016/S0140-6736\(10\)61854-5](https://doi.org/10.1016/S0140-6736(10)61854-5)
3. Cook, D. A., & Steinert, Y. (2013). Online learning for faculty development: A review of the literature. *Medical Teacher*, 35(11), 930–937. <https://doi.org/10.3109/0142159X.2013.827328>
4. Harden, R. M. (2007). Outcome-based education: The future is today. *Medical Teacher*, 29(7), 625–629. <https://doi.org/10.1080/01421590701729930>
5. Issenberg, S. B., McGaghie, W. C., Petrusa, E. R., et al. (2005). Features and uses of high-fidelity medical simulations. *Medical Teacher*, 27(1), 10–28. <https://doi.org/10.1080/01421590500046924>
6. Ruiz, J. G., Mintzer, M. J., & Leipzig, R. M. (2006). The impact of e-learning in medical education. *Academic Medicine*, 81(3), 207–212. <https://doi.org/10.1097/00001888-200603000-00002>
7. Ташпулатова, Ф. К., Садыков, А. С., & Галиуллин, Т. И. (2017). МЕДИКО-СОЦИАЛЬНЫЕ АСПЕКТЫ ТУБЕРКУЛЕЗА ЛЕГКИХ И ВИЧ. *Фтизиатрия и пульмонология*, (2), 136-136.
8. Bekembayeva, G. S., & Tashpulatova, F. K. (2021). PROGNOSIS OF RESISTANT TUBERCULOSIS COURSE AMONG CHILDREN AND TEENAGERS. *Новый день в медицине*, (1), 48-51.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

9. Khomova, N., Tashpulatova, F., & Sultanov, S. (2017). Compliance-is patient adherence to treatment, as well as partnerships between doctor and patient.
10. Ташпулатова, Ф. К., Галиулин, Т. И., & Жумаев, О. А. (2018). АССОЦИАЦИЯ РИСКА РАЗВИТИЯ КАЗЕОЗНОЙ ПНЕВМОНИИ ПРИ ТУБЕРКУЛЕЗЕ ЛЕГКИХ С ГЕНЕТИЧЕСКИМИ МАРКЕРАМИ. Ирекнаука, (14-1), 52-53.
11. Вахабов, А. А., & Ташпулатова, Ф. К. (2018). Поражение печени у больных туберкулезом легких при побочных реакциях от противотуберкулезных препаратов. Молодой ученый, (3), 91-93.
12. Хомова, Н. А., Коломиец, В. М., & Ташпулатова, Ф. К. (2020). Приверженность к лечению больных туберкулезом как фактор риска снижения его эффективности. In Университетская наука: взгляд в будущее (pp. 314-319).
13. Tashpulatova, F., Shamshieva, N., Mukhteremova, V., Medvedeva, N., & Kurbanov, A. (2021). Phytotherapy in the Complex Treatment of Patients with Drug-Resistant Forms of Pulmonary Tuberculosis. Annals of the Romanian Society for Cell Biology, 25(1), 367-372.
14. Ташпулатова, Ф. К., Жалолов, А. Ж., Медведева, Н. В., & Долгушева, Ю. В. (2016). Уровень комплаенса у больных с лекарственно устойчивым туберкулезом. In Медицина: вызовы сегодняшнего дня (pp. 46-50).
15. Tashpulatova, F. K. (2003). Prevention of adverse reactions of antituberculous drugs in pulmonary tuberculosis in patients with different genetic background. Problemy tuberkuleza i boleznei legkikh, (6), 17-20.
16. Ташпулатова, Ф. К. (2017). Выявление туберкулеза легких в общесоматических лечебных учреждениях. Молодой ученый, (3), 236-238.
17. Ташпулатова, Ф. К., & Абдусаломова, М. И. (2020). Частота и характер побочных реакций от противотуберкулезных лекарственных средств у больных детей туберкулезом. Новый день в медицине, 2(30), 544-547.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

18. Тащуплатова, Ф. К., & Абдусаломова, М. И. (2020). Частота и характер побочных реакций от противотуберкулезных лекарственных средств у больных детей туберкулезом. Новый день в медицине, 2(30), 544-547.
19. Isomov, M. M. (2020). Features of etiopathogenesis and the course of inflammatory processes of periapical tissues in women during pregnancy (review of literature)/Isomov MM, Shomurodov KE, Olimjonov KJ, Azimov IM. Biomedicine and practice.–2020.–№ SI-2, 833-838.
20. Isomov, M. M., Shomurodov, K. E., Olimjonov, K. J., & Azimov, I. M. (2020). Features of etiopathogenesis and the course of inflammatory processes of periapical tissues in women during pregnancy. Journal Biomedicine and Practice, 833-838.
21. Shomurodov, K. E., Kuryazova, Z. K., Isomov, M. M., Mukimov, I. I., & Fayziyev, B. R. (2017). Improvement of surgical treatment of fractures of the inferior orbit wall. J Stomatologiya2017, 2, 78-80.
22. Шомуродов, К. Э., & Исомов, М. М. (2020). Мониторинг стационарной и амбулаторной реабилитации беременных женщин с воспалительными заболеваниями ЧЛО. Стоматология, 1, 34-37.
23. Shomurodov, K. E., & Isomov, M. M. (2021). Cytokine profile of blood plasma and oral fluid in pregnant women with odontogenic inflammatory diseases. Central Asian Journal of Medical and Natural Science, 2(3), 118-122.
24. Исомов, М. М., Шомуродов, К. Э., & Ахмадалиев, Н. Н. (2020). Мониторинг госпитализированных беременных женщин с одонтогенными воспалительными заболеваниями ЧЛО за 2017-2019 гг. на базе клиники взрослой хирургической стоматологии ТГСИ. In Инновационная стоматология (pp. 116-119).
25. Мусаев, Ш., Шомуродов, К., & Исомов, М. (2020). Частота и характеристика переломов нижней челюсти у детей. Стоматология, 1(1 (78)), 45-48.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaaoa.com/index.php/5>

- 26.Шомуродов, К. Э., & Мирхусанова, Р. С. (2021). МРТ визуализация структур небно-глоточной области после уранопластики различными способами. In Актуальные вопросы стоматологии детского возраста (pp. 340-346).
- 27.Шомуродов, К. Э., & Мирхусанова, Р. С. (2020). АНАТОМО-ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МЯГКОГО НЁБА И ЯЗЫЧКА ПОСЛЕ УРАНОПЛАСТИКИ У ДЕТЕЙ С ВРОЖДЁННОЙ РАСЩЕЛИНОЙ НЁБА. In СОВРЕМЕННЫЕ АСПЕКТЫ КОМПЛЕКСНОЙ СТОМАТОЛОГИЧЕСКОЙ РЕАБИЛИТАЦИИ ПАЦИЕНТОВ С ДЕФЕКТАМИ ЧЕЛЮСТНО-ЛИЦЕВОЙ ОБЛАСТИ (pp. 187-191).
- 28.Садикова, Х., Махкамов, Б., Абдувалиев, Н., Мамурбоева, М., & Исомов, М. (2019). Преимущества двухэтапной имплантации с применением пьезоинструментов для костного расщепления и аутогенной плазмы крови, обогащенной тромбоцитами. Стоматология, 1(1 (74)), 24-27.
- 29.Шомуродов, К. Э., & Мирхусанова, Р. С. СРАВНИТЕЛЬНАЯ ОЦЕНКА СОСТОЯНИЯ НЕБНО-ГЛОТОЧНОГО КОЛЬЦА ПОСЛЕ УРАНОПЛАСТИКИ МЕТОДОМ МРТ. ББК, 56, 56.
- 30.Искандарова, Ш. Т., Расулова, Н. Ф., Хасанова, М. И., & Юсупалиева, К. Б. (2019). Современные проблемы гигиены почвы в условиях Узбекистана почвы в условиях Узбекистана Ташкент: " Фан.
- 31.Фахриев, Ж. А., Нозимова, Н. Х., & Расулова, Н. Ф. (2019). Сидячий образ жизни и его влияние на здоровье человека. Теория и практика современной науки, (3 (45)), 318-321.
- 32.Расулова, Н. Ф. (2016). Совершенствование методов этического воспитания медицинских сестёр лечебно-профилактических учреждений. Молодой ученый, (7), 409-412.
- 33.Rasulova, N. F., Jalilova, G. A., & Mukhamedova, N. S. (2023). PREVENTION OF IMPORTANT NON-COMMUNICABLE DISEASES

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

AMONG THE POPULATION. Евразийский журнал медицинских и естественных наук, 3(1 Part 2), 2123.

34. Nazarova, S. K., Jalilova, G. A., Mukhamedova, N. S., & Rasulova, N. F. (2021). Features of distance learning organization. Annals of the Romanian Society for Cell Biology, 25(1), 339-347.
35. Усманов, И. А., Джалилова, Г. А., & Расулова, Н. Ф. (2016). К вопросу охраны водных объектов бассейна Амудары на примере Кашкадарьинской области. Вестник науки и образования, (2 (14)), 95-98.
36. Мирзаева, М. А., & Расулова, Н. Ф. (2014). Компьютеризация рабочего места медицинских сестер стационара. Сборник статей и тезисов.
37. Расулова, Н. Ф. (2011). Ўзбекистонда педиатриянинг ривожланиш тарихи.
38. Rasulova, N., Abdullaev, K., & Kuddusova, K. (2024). THE INTEGRATED APPROACH TO THE TREATMENT OF PATIENTS WITH ATROPHIC RHINITIS WHO HAVE COVID-19. Science and innovation, 3(D7), 56-60.
39. Расулова, Н. Ф., & Асадова, Г. А. (2023). ИЗУЧЕНИЕ ОСОБЕННОСТИ ЗДОРОВЬЕСОХРАНЯЮЩЕГО ПОВЕДЕНИЯ И САМООЦЕНКА ЗДОРОВЬЯ СТУДЕНТОВ. Science and innovation, 2(Special Issue 8), 978-980.
40. Abdullaev, N. J. (2018). Pedagogical approaches in preventive medicine education. Medical Education in Uzbekistan, 2, 14–19.
41. Karimova, D. T., & Rakhimov, S. S. (2019). Innovative teaching methods in hygiene and public health disciplines. Bulletin of Tashkent Medical Academy, 4, 41–47.
42. Ismailova, D. K. (2020). Competency-based education in medico-preventive training. Problems of Biology and Medicine, 3, 96–101.
43. Yuldashev, A. K., & Mamatkulov, F. K. (2021). Digital technologies in medical education: Opportunities and challenges. Informatics in Medicine, 1, 22–28.

Eureka Journal of Health Sciences & Medical Innovation (EJHSMI)

ISSN 2760-4942 (Online) Volume 2, Issue 2, February 2026

This article/work is licensed under CC by 4.0 Attribution

<https://eurekaoa.com/index.php/5>

44. Saidova, G. N. (2017). Practice-oriented teaching in preventive medicine. *Pediatrics and Preventive Healthcare*, 2, 33–38.
45. Khasanov, R. U., & Nematov, I. A. (2018). Simulation-based learning in medical universities. *Journal of Medical Pedagogy*, 1, 19–24.
46. Tursunova, M. R. (2020). Blended learning models in higher medical education. *Higher Education in Uzbekistan*, 3, 55–61.
47. Makhmudov, B. S. (2019). Interdisciplinary integration in medico-preventive education. *Public Health and Healthcare Management*, 2, 48–53.
48. World Health Organization. (2020). Guidelines on digital education for health professionals. WHO Press.