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Abstract 

The paper is devoted to the study of the stress-strain state (SSS) of reinforced 

concrete composite-reinforced double-layer combined slabs. The derivation of 

equations and formulation of boundary conditions are given, taking into account 

the interlayer shear and the compliance of the adhesive joint. The analysis of the 

influence of the geometric and physical parameters of double-layer combined 

slabs on the SSS is presented. 

 

Introduction 

We assume that the two-layer combined composite-reinforced reinforced 

concrete slab under consideration consists of a bearing layer and a reinforcing 

layer. We assume that: 

1.The thicknesses of the first load-bearing (reinforced concrete), second 

(composite) reinforcing and bonding (connecting) layers are constant. 

2.The thickness of the load-bearing (thick) layer is significantly greater than that 

of the second reinforcing layer. (h>δn). 

3. In the case of slabs, the accepted hypotheses based on the refined theory of 

S.A. Ambartsumian are valid. [1, 2]: 
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Fig. 1. Composite-reinforced double-layer combined reinforced concrete slab. 

 

Assuming the hypotheses of S.A. Ambartsumian [1, 2] approximately, we 

consider that the relative elongation of the deformation in the Z direction is equal 

to zero. 

Shear deformations of the first layer. 

ℓ𝑥𝑧
(1)

= 0,5 (
ℎ2

4
− 𝛾2) Ф1 + (0,5 −

𝛾

ℎ
)

𝜏1

𝐺13
(1)

 

ℓ𝑦𝑧
(1)

= 0,5 (
ℎ2

4
− 𝛾2) Ф2 + (0,5 −

𝛾

ℎ
)

𝜏2

𝐺23
(1)                        (1) 

Similarly, the shear deformations of the second composite reinforcement layer 

vary with the thickness of the slab according to the following specified law  

ℓх𝑧
(2)

= (0,5 +
𝛾1

𝛿𝑛
)

𝜏1

𝐺13
(2)

 

ℓу𝑧
(2)

= (0,5 +
𝛾1

𝛿𝑛
)

𝜏2

𝐺23
(2)    (2) 

Ф𝑖 = Ф𝑖(𝑥, 𝑦) - arbitrary desired shift functions; 

𝜏𝑖 = 𝜏𝑖(𝑥, 𝑦) - desired tangential stresses; 

𝐺𝑖,𝐾
(1)

, 𝐺𝑖,𝐾
(2)

 - the shear modules of the first and second layers (i=1, 2; K=3). 
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To obtain the basic deformation equations for two-layer composite reinforced 

concrete slabs, we use the Lagrangian variational principle, taking into account 

the shear rigidity. 

We will determine the potential energy of an elastic reinforced concrete slab 

using the components of the stress and strain tensors and present it in the 

following form: 

U(z) =
1

2
∫ ∬ (σx

(1)
Ԑx

(1)
+ σy

(1)
Ԑy

(1)
+ τxy

(1)
Ԑxy

(1)
+ τxz

(1)
× γxz

(1)
+ τyz × γyz)

+
h
2

−
h
2

s

× 𝑑𝑥𝑑𝑦𝑑𝛾 

+ ∫ ∬ (𝜎𝑥
(2)

Ԑ𝑥
(2)

+ 𝜎𝑦
(2)

Ԑ𝑦
(2)

+ 𝜏𝑥𝑦
(2)

Ԑ𝑥𝑦
(2)

+ 𝜏𝑥𝑧
(2)

× 𝛾𝑥𝑧
(2)

+ 𝜏𝑦𝑧
(2)

× ×
+

𝛿𝑛
2

+
ℎ2
2

−
𝛿𝑛
2

−
ℎ2
2

𝑠

𝛾𝑦𝑧
(2)

) 𝑑𝑥𝑑𝑦𝑑𝛾1 +
1

2
∬(τ1

աԐա13 + τ2
աԐա23 + τ3

2Ԑա13 + τ4
2Ԑա232𝑞𝑤)𝑑𝑠.                                               

(3) 

Integrating by thickness (for the first layer –from−
ℎ

2
 before +

ℎ

2
, for the second 

one, from−
𝛿𝑛

2
 до 

𝛿𝑛

2
) we will obtain functional expressions in the form of a double 

integral 

𝑈 =
1

2
∬ 𝑈𝐹 (

𝜕𝑢0

𝜕𝑥
,
𝜕𝑢0

𝜕𝑦
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
,
𝜕Ф1

𝜕𝑥
,
𝜕Ф1

𝜕у
,
𝜕Ф2

𝜕𝑥
,
𝜕Ф2

𝜕𝑦
,
𝜕𝜏1

𝜕𝑥
,
𝜕𝜏1

𝜕𝑦
,
𝜕𝜏2

𝜕𝑥
, 

𝜕𝜏2

𝜕𝑦
,

𝜕2𝑤

𝜕𝑥2
,

𝜕2𝑤

𝜕𝑦2
,

𝜕2𝑤

𝜕𝑥𝜕𝑦
,

𝜕𝑤

𝜕𝑥
,

𝜕𝑤

𝜕𝑦
, 𝑈0, 𝑉0, Ф1, Ф2, 𝜏1, 𝜏2, 𝑤) 𝑑𝑠  (4) 

For this functional, the well-known Euler variational equation is as follows: 

𝐹𝑧 −
𝜕

𝜕𝑥
{𝐹𝜕𝑧

𝜕𝑥

} −
𝜕

𝜕𝑦
{𝐹𝜕𝑧

𝜕𝑦

} +
𝜕

𝜕𝑥2
{𝐹𝜕2𝑧

𝜕𝑥2

} +
𝜕2

𝜕𝑥𝜕𝑦
{𝐹 𝜕2𝑧

𝜕𝑥𝜕𝑦

} +
𝜕2

𝜕𝑦2
{𝐹𝜕2𝑧

𝜕𝑦2

} = 0   (5) 

After some transformations, boundary conditions must be added to this equation, 

which are obtained using the Green's formula. 

 For W, they can be obtained based on the following expressions 
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∮ [𝐹𝜕2𝑤
𝜕х2

𝛿 (
𝜕𝑤

𝜕х
) 𝑑𝑦 − 𝐹𝜕2𝑤

𝜕𝑦2

𝛿 (
𝜕𝑤

𝜕𝑦
) 𝑑𝑥] − ∮ [

𝜕

𝜕𝑥
{𝐹𝜕2𝑤

𝜕𝑥2

} +

𝑐с

 

+
𝜕

𝜕𝑦
{𝐹 𝜕2𝑤

𝜕𝑥𝜕𝑦

}] 𝛿𝑤 𝑑𝑦 + ∮ [
𝜕

𝜕𝑥
{𝐹 𝜕2𝑤

𝜕𝑥𝜕𝑦

} +
𝜕

𝜕𝑥
{𝐹𝜕2𝑤

𝜕𝑦2

}] ×

𝑐

 

× 𝛿𝑤𝑑𝑥 + ∮ (𝐹𝜕𝑤

𝜕𝑥

𝑑𝑦 − 𝐹𝜕𝑤

𝜕𝑦

𝑑𝑥) 𝛿𝑤 = 0
𝑐

                   (6) 

The remaining boundary conditions for 𝑈0, 𝑉0, Ф1, Ф2, 𝜏1 и 𝜏2 they have the 

following form: 

∮ (𝐹𝜕𝑢0
𝜕𝑥

cos(𝑦𝑠̂) − 𝐹𝜕𝑢0
𝜕𝑦

cos(𝑥𝑠̂)) 𝛿𝑈0 = 0;

с

 

∮ (𝐹𝜕𝑣0
𝜕𝑥

cos(𝑦𝑠̂) − 𝐹𝜕𝑣0
𝜕𝑦

cos(𝑥𝑠̂)) 𝛿𝑉0 = 0;

с

 

∮ (𝐹𝜕Ф1,(2)

𝜕𝑥

cos(𝑦𝑠̂) − 𝐹𝜕Ф1,(2)

𝜕𝑦

cos(𝑥𝑠̂)) 𝛿Ф1,(2) = 0;
с

              (7) 

∮ (𝐹𝜕Ф1,(2)

𝜕𝑥

cos(𝑦𝑠̂) − 𝐹𝜕Ф1,(2)

𝜕𝑦

cos(𝑥𝑠̂)) 𝛿𝜏1,(2)

с

= 0. 

For 𝑈0, 𝑉0, Ф1, Ф2, 𝜏1, и 𝜏2 Natural boundary conditions can be obtained in a 

similar way. The integrand functions in formulas (7) take the following 

expressions 

𝐹𝜕𝑢0
𝜕х

= 2𝐾1𝑢0

𝜕𝑢0

𝜕𝑥
+ 𝐾3𝑢0

𝜕𝑣0

𝜕𝑦
+ 𝐾4𝜏1

𝜕𝜏1

𝜕𝑥
+ 𝐾4𝜏2

𝜕𝜏2

𝜕𝑦
+ 

+𝐾9𝑢0

𝜕2𝑤

𝜕𝑥2
+ 𝐾10𝑢0

𝜕2𝑤

𝜕𝑦2
+ 𝐾14Ф

𝜕Ф1

𝜕𝑥
+ 𝐾15Ф1

𝜕Ф2

𝜕𝑦
; 
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𝐹𝜕𝑢0
𝜕𝑦

= 2𝐾2𝑢0

𝜕𝑢0

𝜕𝑦
+ 𝐾4𝑢0

𝜕𝑉0

𝜕𝑥
+ 𝐾5𝜏2

𝜕𝜏2

𝜕𝑥
+ 𝐾5𝜏1

𝜕𝜏1

𝜕𝑦
+ 

+𝐾12Ф1

𝜕Ф2

𝜕𝑥
+ 𝐾12Ф1

𝜕Ф1

𝜕𝑦
+ 𝐾15𝑢0

𝜕2𝑤

𝜕𝑥𝜕𝑦
; 

𝐹𝜕𝑣0
𝜕𝑥

= 2𝐾2𝑢0

𝜕𝑣0

𝜕𝑥
+ 𝐾4𝑢0

𝜕𝑈0

𝜕𝑦
+ 𝐾5𝜏2

𝜕𝜏2

𝜕𝑥
+ 𝐾5𝜏1

𝜕𝜏1

𝜕𝑦
+ 

+𝐾12Ф1

𝜕Ф2

𝜕𝑥
+ 𝐾12Ф1

𝜕Ф1

𝜕𝑦
+ 𝐾15𝑢0

𝜕2𝑤

𝜕𝑥𝜕𝑦
; 

𝐹𝜕𝑣0
𝜕𝑦

= 2𝐾2𝑣0

𝜕𝑣0

𝜕𝑦
+ 𝐾3𝑢0

𝜕𝑢0

𝜕𝑥
+ 𝐾3𝜏2

𝜕𝜏2

𝜕𝑦
+ 𝐾3Ф2

𝜕Ф2

𝜕𝑥
+ 

+𝐾10𝑣0

𝜕2𝑤

𝜕𝑥2
+ 𝐾10𝑣0

𝜕2𝑤

𝜕𝑦2
+ 𝐾15Ф1

𝜕Ф1

𝜕𝑥
+ 𝐾15Ф2

𝜕Ф2

𝜕𝑦
; 

𝐹𝜕Ф1
𝜕𝑥

= 2𝐾1Ф1

𝜕Ф1

𝜕𝑥
+ 𝐾3Ф1

𝜕2𝑤

𝜕𝑥2
+ 𝐾4Ф1

𝜕2𝑤

𝜕𝑦2
+ 𝐾9𝜏1

𝜕𝜏1

𝜕𝑥
+ 

+𝐾10𝜏1

𝜕𝜏2

𝜕𝑦
+ 𝐾8Ф1

𝜕Ф2

𝜕𝑦
+ 𝐾14Ф1

𝜕𝑈0

𝜕𝑥
+ 𝐾15Ф1

𝜕𝑉0

𝜕𝑦
; 

𝐹𝜕Ф1
𝜕𝑦

= 2𝐾2Ф1

𝜕Ф1

𝜕𝑦
+ 𝐾5Ф1

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 2𝐾2Ф1

𝜕Ф2

𝜕𝑥
+ 𝐾11𝜏2

𝜕𝜏2

𝜕𝑥
+ 

+𝐾11𝜏1

𝜕𝜏1

𝜕𝑦
+ 𝐾12Ф1

𝜕𝑣0

𝜕𝑥
+ 𝐾12Ф1

𝜕𝑈0

𝜕𝑦
; 

𝐹𝜕ф2
𝜕𝑋

= 2𝐾2Ф1

𝜕Ф2

𝜕𝑥
+ 𝐾5Ф1

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 2𝐾2Ф1

𝜕Ф2

𝜕𝑦
+ 𝐾11𝜏2

𝜕𝜏2

𝜕𝑥
+ 

+𝐾12𝜏1

𝜕𝜏1

𝜕𝑦
+ 𝐾12Ф1

𝜕𝑉0

𝜕𝑥
+ 𝐾12Ф1

𝜕𝑈0

𝜕𝑦
; 

𝐹𝜕Ф2
𝜕𝑦

= 2𝐾2Ф2

𝜕Ф2

𝜕𝑦
+ 𝐾4Ф1

𝜕2𝑤

𝜕𝑥2
+ 𝐾4Ф2

𝜕2𝑤

𝜕𝑦2
+ 𝐾10𝜏1

𝜕𝜏1

𝜕𝑥
+ 

+𝐾10𝜏2

𝜕𝜏2

𝜕𝑦
+ 𝐾8𝐹1

𝜕Ф1

𝜕𝑥
+ 𝐾15Ф1

𝜕𝑢0

𝜕𝑥
+ 𝐾15Ф2

𝜕𝑣0

𝜕𝑦
; 
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𝐹𝜕𝜏1
𝜕𝑥

= 2𝐾1𝜏1

𝜕𝜏1

𝜕𝑥
+ 𝐾3𝜏1

𝜕𝑣0

𝜕𝑦
+ 𝐾4𝜏1

𝜕𝑢0

𝜕𝑥
+ 𝐾7𝜏1

𝜕2𝑤

𝜕𝑥2
+ 

+𝐾8𝜏1

𝜕2𝑤

𝜕𝑦2
+ 𝐾9𝜏1

𝜕Ф1

𝜕𝑥
+ 𝐾10𝜏1

𝜕Ф2

𝜕𝑦
+ 𝐾13𝜏1

𝜕𝜏2

𝜕𝑦
; 

𝐹𝜕𝜏1
𝜕𝑦

= 2𝐾2𝜏1

𝜕𝜏1

𝜕𝑦
+ 𝐾5𝜏1

𝜕𝑣0

𝜕𝑥
+ 𝐾6𝜏1

𝜕𝑢0

𝜕𝑦
+ 𝐾11𝜏1

𝜕Ф1

𝜕𝑦
+ 

+𝐾11𝜏1

𝜕Ф2

𝜕𝑥
+ 𝐾14𝜏1

𝜕𝜏2

𝜕𝑥
+ 𝐾15𝜏1

𝜕2𝑤

𝜕𝑥𝜕𝑦
; 

𝐹𝜕𝜏2
𝜕𝑥

= 2𝐾1𝜏2

𝜕𝜏2

𝜕𝑥
+ 𝐾5𝜏1

𝜕𝑣0

𝜕𝑥
+ 𝐾5𝜏1

𝜕𝑢0

𝜕𝑦
+ 𝐾11𝜏2

𝜕Ф1

𝜕𝑦
+ 

+𝐾12𝜏2

𝜕Ф2

𝜕𝑥
+ 𝐾14𝜏2

𝜕𝜏1

𝜕𝑦
+ 𝐾15𝑤

𝜕2𝑤

𝜕𝑥𝜕𝑦
; 

𝐹𝜕𝜏2
𝜕𝑦

= 2𝐾2𝜏2

𝜕𝜏2

𝜕𝑦
+ 𝐾3𝜏2

𝜕𝑣0

𝜕𝑦
+ 𝐾3𝜏1

𝜕𝑢0

𝜕𝑥
+ 𝐾7𝜏2

𝜕2𝑤

𝜕𝑦2
+ 

+𝐾8𝜏1

𝜕2𝑤

𝜕𝑥2
+ 𝐾9𝜏2

𝜕Ф1

𝜕𝑥
+ 𝐾10𝜏2

𝜕Ф2

𝜕𝑦
+ 𝐾13𝜏2

𝜕𝜏1

𝜕𝑥
;     (8) 

Let's consider the resulting system of differential equations for a combined 

composite reinforced concrete slab: 

K9u0

∂3w

∂x3
+ 2U4

∂3w

∂x ∂y
+ 2K1u0

∂2u0

∂x2
+ 2K2u0

∂2U0

∂y2
+ 

+𝐾4𝜏1

𝜕2𝜏1

𝜕𝑥2
+ 𝐾5𝜏1

𝜕2𝜏1

𝜕𝑦2
+ 𝑇23

𝜕2𝜏2

𝜕𝑥𝜕𝑦
+ 𝑈3

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐹5 × 

×
𝜕2Ф2

𝜕𝑥𝜕𝑦
+ 𝐾14Ф1

𝜕2Ф1

𝜕𝑥2
+ 𝐾12Ф1

𝜕2Ф1

𝜕𝑦2
= 0 

𝐾10𝑣0

𝜕3𝑤

𝑦3
+ 2𝑈4

𝜕3𝑤

𝜕𝑥2𝜕𝑦
+ 2𝐾1𝑣0

𝜕2𝑉0

𝜕𝑥2
+ 2𝐾2𝑣0

𝜕2𝑉0

𝜕𝑦2
+ 

+𝐾5𝜏1

𝜕2𝜏2

𝜕𝑥2
+ 𝐾3𝜏2

𝜕2𝜏2

𝑦2
+ 𝑇3

𝜕2𝜏1

𝜕𝑥𝜕𝑦
+ 𝑈3

𝜕2𝑈0

𝜕𝑥𝜕𝑦
+ 
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+𝐹5

𝜕2Ф1

𝜕𝑥𝜕𝑦
+ 𝐾12Ф1

𝜕2Ф2

𝜕𝑥2
+ 𝐾15Ф2

𝜕2Ф2

𝜕𝑦2
= 0; 

𝐾3Ф1

𝜕3𝑤

𝜕𝑥3
+ 2𝐹3

𝜕3𝑤

𝜕𝑥𝜕𝑦2
+ 2𝐾1Ф1

𝜕2Ф1

𝜕𝑥2
+ 2𝐾2Ф1

𝜕2Ф1

𝜕𝑦2
+ 𝐾9𝜏1

× 

×
𝜕2𝜏1

𝜕𝑥2
+ 𝐾11𝜏1

𝜕2𝜏1

𝜕𝑦2
+ 𝑇25

𝜕2𝜏2

𝜕𝑥𝜕𝑦
+ 𝐹5

𝜕2𝑉0

𝜕𝑥𝜕𝑦
+ 𝐹4 × 

×
𝜕2Ф2

𝜕𝑥𝜕𝑦
+ 𝐾14Ф1

𝜕2𝑈0

𝜕𝑥2
+ 𝐾12Ф1

𝜕2𝑢0

𝜕𝑦2
− 2𝐾16Ф1

Ф1 −
ℎ3

12
𝜏1 = 0; 

𝐾4Ф2

𝜕3𝑤

𝜕𝑦3
+ 2𝐹3

𝜕3𝑤

𝜕𝑥2𝜕𝑦
+ 2𝐾1Ф2

𝜕2Ф2

𝜕𝑥2
+ 2𝐾2Ф2

𝜕2Ф2

𝜕𝑦2
+ 

+𝐾11𝜏2

𝜕2𝜏2

𝜕𝑥2
+ 𝐾10𝜏2

𝜕2𝜏2

𝜕𝑦2
+ 𝑇5

𝜕2𝜏1

𝜕𝑥𝜕𝑦
+ 𝑇5

𝜕2𝑈0

𝜕𝑥𝜕𝑦
+ 

+𝐹4

𝜕2Ф1

𝜕𝑥𝜕𝑦
+ 𝐾12Ф1

𝜕2𝑉0

𝜕𝑥2
+ 𝐾15Ф2

𝜕2𝑉0

𝜕𝑦2
− 2𝐾16Ф2

−
ℎ3

12
𝜏2 = 0; 

𝐾7𝜏1

𝜕3𝑤

𝜕𝑥3
+ 2𝑇4

𝜕3𝑤

𝜕𝑥𝜕𝑦2
+ 2𝐾1𝜏1

𝜕2𝜏1

𝜕𝑥2
+ 2𝐾2𝜏1

𝜕2𝜏1

𝜕𝑦2
+ 𝐾9𝜏1

𝜕2Ф1

𝜕𝑥2
+ 

+𝐾11

𝜕2Ф1

𝜕𝑦2
+ 𝑇6

𝜕2𝜏2

𝜕𝑥𝜕𝑦
+ 𝑇3

𝜕2𝑉0

𝜕𝑥𝜕𝑦
+ 𝑇5

𝜕2Ф2

𝜕𝑥𝜕𝑦
+ 𝐾4𝜏1

𝑥2𝑈0

𝜕𝑥2
+ 

+𝐾5𝜏1

𝜕2𝑈0

𝜕𝑦2
− 2𝐾16𝜏1

𝜏1 −
ℎ3

12
Ф1 = 0; 

𝐾7𝜏2

𝜕3𝑤

𝜕𝑦3
+ 2𝑇24

𝜕3𝑤

𝜕𝑥2𝜕𝑦
+ 2𝐾1𝜏2

𝜕2𝜏2

𝜕𝑥2
+ 2𝐾2𝜏2

𝜕2𝜏2

𝜕𝑦2
+ 𝐾12𝜏2

𝜕2Ф2

𝜕𝑥2
+ 

+𝐾10𝜏2

𝜕2Ф2

𝜕𝑦2
+ 𝑇26

𝜕𝜏1

𝜕𝑥𝜕𝑦
+ 𝑇23

𝜕2𝑉0

𝜕𝑥𝜕𝑦
+ 𝑇25

𝜕2Ф1

𝜕𝑥𝜕𝑦
+ 

+𝐾5𝜏2

𝜕2𝑈0

𝜕𝑥2
− 𝐾3𝜏2

𝜕2𝑉0

𝜕𝑦2
− 2𝐾16𝜏2

𝜏2 −
ℎ3

12
Ф2 = 0; 

𝐾1𝑤

𝜕4𝑤

𝜕𝑥4
+ 𝐾3𝑤

𝜕4𝑤

𝜕𝑦4
+ 𝐾𝑤3

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

1

2
𝐾7𝜏1

𝜕3𝜏1

𝜕𝑥3
+ 
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+
1

2
𝐾7𝜏2

𝜕3𝜏2

𝜕𝑦3
+ 𝑇4

𝜕3𝜏1

𝜕𝑥𝜕𝑦2
+ 𝑇24

𝜕3𝜏2

𝜕𝑥2𝜕𝑦
+

1

2
𝐾3Ф1

𝜕3Ф1

𝜕ч3
+ 

+
1

2
𝐾4Ф2

𝜕3Ф2

𝜕𝑦3
+ 𝐹3

𝜕3Ф1

𝜕𝑥𝜕𝑦2
+ 𝐹3

𝜕3Ф2

𝜕𝑥2𝜕𝑦
+

1

2
𝐾9𝑢0

𝜕3𝑈0

𝜕𝑥3
+ 

+
1

2
𝐾10𝑣0

𝜕3𝑉0

𝜕𝑦3
+ 𝑈4

𝜕3𝑈0

𝜕𝑥𝜕𝑦2
+ 𝑈4

𝜕3𝑉0

𝜕𝑦𝜕𝑥2
− 𝑞 = 0;    (9) 

The coefficients of the system of differential equations (9) are given in the 

appendix of [3.4]. 

The resulting equations are assumed to be 𝛿𝑛 = 0,  𝜏1 = 𝜏2 = 0 they are 

transformed into the well-known equations for a single-layer plate obtained by 

S.A. Abartsumyan[2]. In this case, the shear function adopted in the present work 

is related to the shear function in [2] by the following equation: 

Ф1
(𝑖)

= Ф1
(𝑖)(𝑥, 𝑦)𝐺13

(𝑖)
, Ф2

(𝑖)̃
= Ф2

(𝑖)
(𝑥, 𝑦)𝐺23

(𝑖)
. 

It is obvious that the Sophie-Germain equation for an isotropic single-layer slab 

is a special case of these equations. 

The given system of differential equations with boundary conditions (8,9) allows 

to estimate the deformability of a combined composite reinforced concrete slab 

with sufficient accuracy. It also makes it possible to analyze the influence of the 

interlayer shear of the adhesive joint and other mechanical characteristics of 

combined reinforced concrete slabs on the stress-strain state. 

The obtained differential equations (9) for two-layer plates are a generalization 

of the equations obtained by S.A. Pelekh. Obviously, if we do not take into 

account the tangential stresses in the bonding layer, equation (9) will turn into the 

well-known system of differential equations obtained by S.A. Ambartsumian.[1-

9]. 

To analyze the influence of the mentioned factors, hinged-supported slabs are 

considered under uniformly distributed and linearly distributed static loads. 

As examples, combined slabs made on the basis of concrete and fiberglass are 

selected. 
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As an example, the calculation of a two-layer composite reinforced concrete slab 

loaded in the middle by a concentrated load is performed, the left support is fixed, 

and the right support is hinged along the contour. 

Е1
Б = 1,08. 105𝑘𝑔/𝑠𝑚2, Е2

Б = 0,81. 105𝑘𝑔/𝑠𝑚2, Е1
П = 3,05. 105𝑘𝑔/𝑠𝑚2, 

Е2
П = 1,88 ∙ 105

𝑘𝑔

𝑠𝑚2
 

-Poisson coefficients of concrete and fiberglassμ12
(2)

= μ21
(2)

= 0,18    - plate 

dimensions (Fig. 1) a = 1,2 m vs = 3,6 m, 

- the thickness of the concrete layer h = 18 sm, 

-thickness of the fiberglass layer𝛿𝑛 = 0,25 𝑠𝑚, 

-seam thickness ℎш = 0,015 sm. 

Seam shear modules 𝐺ш13 𝑎𝑛𝑑𝐺ш23 they ranged from 1 before 50000. 

The calculation results showed that the change (increase) in the shear modulus of 

the seam 𝐺ш𝑖𝑘 from 60 before 600 MPa leads to a 3.9% decrease in deflection, 

while the load-bearing reinforced concrete layer increases by 8.1%. 

From the obtained dependencies, it can be seen that the smaller the shear modulus 

of the seam is compared to the layer (𝐺ш𝑖𝑘 < 𝐺𝑖𝑘
(1)

, 𝐺ш𝑖𝑘 < 𝐺𝑖𝑘
(2)

), The effect of 

seam compliance on the stress-strain state of double-layer composite reinforced 

concrete slabs is greater. 
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